写一个pym的强化学习代码
时间: 2023-10-02 22:07:03 浏览: 129
当然可以,以下是一个简单的强化学习代码示例:
```
# 引入必要的库
import gym
import numpy as np
# 创建强化学习环境
env = gym.make('CartPole-v0')
# 定义超参数
alpha = 0.1 # 学习率
gamma = 0.99 # 折扣率
epsilon = 1.0 # 贪心率
decay_rate = 0.99 # 贪心率衰减率
num_episodes = 5000 # 训练次数
# 初始化Q表
Q = np.zeros((env.observation_space.n, env.action_space.n))
# 训练强化学习模型
for episode in range(num_episodes):
# 重置环境
state = env.reset()
done = False
while not done:
# 选择动作
if np.random.uniform() < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(Q[state])
# 执行动作并观察下一个状态、奖励、是否结束
next_state, reward, done, info = env.step(action)
# 更新Q值
Q[state][action] += alpha * (reward + gamma * np.max(Q[next_state]) - Q[state][action])
state = next_state
# 贪心率衰减
epsilon *= decay_rate
# 测试强化学习模型
state = env.reset()
done = False
total_reward = 0
while not done:
action = np.argmax(Q[state])
next_state, reward, done, info = env.step(action)
total_reward += reward
state = next_state
print('Total reward:', total_reward)
```
希望这个示例代码能够帮助你!
阅读全文