请帮我写一份模糊神经网络的代码
时间: 2023-04-06 19:05:01 浏览: 113
以下是一个简单的模糊神经网络的 Python 代码:
```python
import numpy as np
class FuzzyNeuralNetwork:
def __init__(self, num_inputs, num_outputs, num_rules):
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.num_rules = num_rules
self.input_mfs = []
self.output_mfs = []
self.rules = []
for i in range(num_inputs):
self.input_mfs.append(self.create_mfs())
for i in range(num_outputs):
self.output_mfs.append(self.create_mfs())
for i in range(num_rules):
rule = []
for j in range(num_inputs):
rule.append(np.random.randint(len(self.input_mfs[j])))
rule.append(np.random.randint(len(self.output_mfs)))
self.rules.append(rule)
def create_mfs(self):
mfs = []
mfs.append(('low', np.random.uniform(0, 1)))
mfs.append(('medium', np.random.uniform(0, 1)))
mfs.append(('high', np.random.uniform(0, 1)))
return mfs
def fuzzify_inputs(self, inputs):
fuzzified_inputs = []
for i in range(self.num_inputs):
mfs = self.input_mfs[i]
fuzzified_input = []
for j in range(len(mfs)):
fuzzified_input.append(self.membership_function(inputs[i], mfs[j]))
fuzzified_inputs.append(fuzzified_input)
return fuzzified_inputs
def membership_function(self, x, mf):
if mf[0] == 'low':
return max(0, min(1, (mf[1] - x) / (mf[1] - mf[2])))
elif mf[0] == 'medium':
return max(0, min(1, 2 * (x - mf[0]) / (mf[2] - mf[0])))
elif mf[0] == 'high':
return max(0, min(1, (x - mf[1]) / (mf[0] - mf[1])))
def infer(self, fuzzified_inputs):
outputs = np.zeros(self.num_outputs)
for i in range(self.num_rules):
rule = self.rules[i]
weight = 1
for j in range(self.num_inputs):
weight *= fuzzified_inputs[j][rule[j]]
outputs[rule[-1]] += weight
return outputs
def defuzzify_outputs(self, outputs):
defuzzified_outputs = []
for i in range(self.num_outputs):
mfs = self.output_mfs[i]
defuzzified_output = 0
for j in range(len(mfs)):
defuzzified_output += self.inverse_membership_function(outputs[i], mfs[j])
defuzzified_outputs.append(defuzzified_output / len(mfs))
return defuzzified_outputs
def inverse_membership_function(self, y, mf):
if mf[0] == 'low':
return mf[1] - y * (mf[1] - mf[2])
elif mf[0] == 'medium':
return mf[0] + y * (mf[2] - mf[0]) / 2
elif mf[0] == 'high':
return mf[1] + y * (mf[0] - mf[1])
```
这个模糊神经网络包含了模糊化、推理和去模糊化三个步骤。在初始化时,我们需要指定输入、输出和规则的数量。然后,我们随机生成输入和输出的隶属函数以及规则。在推理时,我们首先将输入模糊化,然后根据规则计算每个输出的权重,最后将输出去模糊化。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)