用python写一个基于Transformer的高光谱和LiDAR特征融合分类
时间: 2023-06-13 11:06:02 浏览: 156
高光谱遥感数据集成分类算法
好,这是一个比较复杂的任务,需要用到一些机器学习和深度学习的相关技术。下面是一个基于Transformer的高光谱和LiDAR特征融合分类的Python示例代码,供您参考:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class TransformerEncoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads):
super(TransformerEncoder, self).__init__()
self.self_attn = nn.MultiheadAttention(hidden_size, num_heads)
self.feed_forward = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.ReLU())
self.layer_norm1 = nn.LayerNorm(hidden_size)
self.layer_norm2 = nn.LayerNorm(hidden_size)
self.dropout1 = nn.Dropout(p=0.1)
self.dropout2 = nn.Dropout(p=0.1)
self.num_layers = num_layers
def forward(self, x):
for i in range(self.num_layers):
residual = x
x = self.layer_norm1(x)
x, _ = self.self_attn(x, x, x)
x = self.dropout1(x)
x += residual
residual = x
x = self.layer_norm2(x)
x = self.feed_forward(x)
x = self.dropout2(x)
x += residual
return x
class HSI_LiDAR_Transformer(nn.Module):
def __init__(self, hsi_input_size, lidar_input_size, hidden_size, num_classes):
super(HSI_LiDAR_Transformer, self).__init__()
self.hsi_encoder = TransformerEncoder(hsi_input_size, hidden_size, num_layers=2, num_heads=4)
self.lidar_encoder = TransformerEncoder(lidar_input_size, hidden_size, num_layers=2, num_heads=4)
self.fc = nn.Linear(hidden_size * 2, num_classes)
def forward(self, hsi, lidar):
hsi = self.hsi_encoder(hsi)
lidar = self.lidar_encoder(lidar)
x = torch.cat((hsi, lidar), dim=1)
x = self.fc(x)
return x
# 训练和测试的代码
model = HSI_LiDAR_Transformer(hsi_input_size=256, lidar_input_size=64, hidden_size=128, num_classes=10)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# 训练集和测试集,假设都已经准备好了
train_loader = ...
test_loader = ...
for epoch in range(10):
model.train()
for i, (hsi, lidar, label) in enumerate(train_loader):
optimizer.zero_grad()
output = model(hsi, lidar)
loss = criterion(output, label)
loss.backward()
optimizer.step()
model.eval()
correct = 0
total = 0
with torch.no_grad():
for i, (hsi, lidar, label) in enumerate(test_loader):
output = model(hsi, lidar)
_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
print('Epoch %d, Test Accuracy: %f' % (epoch, correct / total))
```
这段代码实现了一个基于Transformer的高光谱和LiDAR特征融合分类器,使用了PyTorch框架。在代码中,我们首先定义了一个TransformerEncoder类,它实现了一个Transformer的Encoder模块。然后我们定义了一个HSI_LiDAR_Transformer类,它使用两个TransformerEncoder对输入的高光谱和LiDAR特征进行编码,然后将编码后的结果进行拼接,并接上一个全连接层进行分类。最后我们使用Adam优化器和交叉熵损失函数来训练模型,并在测试集上进行测试。
需要注意的是,这只是一个示例代码,具体的实现细节还需要根据具体的数据集和任务进行调整。
阅读全文