DASCAN算法python代码
时间: 2023-10-03 08:08:31 浏览: 212
DASCAN(Discrete All Scale Canopy Analysis)算法是一种用于分析森林结构的方法,它可以计算各种尺度的森林结构指标,如树冠覆盖度、高度分布、树冠形态等。以下是一个简单的Python实现:
```python
import numpy as np
import matplotlib.pyplot as plt
def dascan(heights, resolution):
"""DASCAN algorithm implementation."""
heights = np.array(heights)
res = resolution
scales = np.arange(res, heights.max(), res)
canopy_cover = []
height_std = []
height_cv = []
for scale in scales:
# Calculate the number of cells occupied by the tree canopy
occupancy = np.sum(heights >= scale)
canopy_cover.append(occupancy / heights.size)
# Calculate the standard deviation of the heights within the canopy
heights_within_canopy = heights[heights >= scale]
height_std.append(np.std(heights_within_canopy))
# Calculate the coefficient of variation of the heights within the canopy
height_cv.append(np.std(heights_within_canopy) / np.mean(heights_within_canopy))
return scales, canopy_cover, height_std, height_cv
# Example usage
heights = [10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 12, 13, 14, 15]
res = 1
scales, canopy_cover, height_std, height_cv = dascan(heights, res)
# Plot the results
fig, ax1 = plt.subplots()
ax1.plot(scales, canopy_cover, 'b-', label='Canopy cover')
ax1.set_xlabel('Scale (m)')
ax1.set_ylabel('Canopy cover')
ax2 = ax1.twinx()
ax2.plot(scales, height_std, 'r-', label='Canopy height std')
ax2.plot(scales, height_cv, 'r--', label='Canopy height cv')
ax2.set_ylabel('Canopy height')
fig.legend(loc='upper right')
plt.show()
```
在这个例子中,我们使用高度列表`heights`和分辨率`res`作为输入,然后计算树冠覆盖度、高度标准差和高度变异系数等指标,并用Matplotlib绘制了结果。
阅读全文