matlab 求解非线性方程组

时间: 2023-05-30 08:01:47 浏览: 71
Matlab可以使用fsolve函数来求解非线性方程组,具体步骤如下: 1. 定义非线性方程组 首先需要定义非线性方程组,例如: function F = myfun(x) F = [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^2]; end 这个方程组包含两个未知数x(1)和x(2),其中第一个方程表示一个圆的方程,第二个方程表示一个抛物线的方程。 2. 使用fsolve函数求解方程组 使用fsolve函数可以求解方程组,例如: x0 = [0.5, 0.5]; options = optimoptions('fsolve','Display','iter'); [x,fval,exitflag,output] = fsolve(@myfun,x0,options); 其中,@myfun表示要求解的非线性方程组的函数句柄,x0是初始解向量,options是fsolve函数的参数设置,x是求解得到的解向量,fval是方程组的函数值,exitflag表示求解状态,output是求解的详细输出信息。 3. 输出结果 求解完成后,可以输出求解结果,例如: disp('The solution is:'); disp(x); 运行结果如下: The solution is: 0.6180 0.7862 这就是方程组的解向量。
相关问题

matlab求解非线性方程组

MATLAB可以使用“fsolve”函数求解非线性方程组。假设有如下非线性方程组: x^2 + y^2 = 1 x^2 - y^2 = 0 则可以使用以下代码求解: fun = @(x) [x(1)^2 + x(2)^2 - 1; x(1)^2 - x(2)^2]; x0 = [0.5; 0.5]; x = fsolve(fun, x0); 其中,“fun”为一个匿名函数,输入参数为未知变量向量x,输出为方程组的值向量;“x0”为起始点向量,即求解的初始值。运行后,可以得到x=[0.7071; 0.7071]的解。 需要注意的是,在使用“fsolve”函数求解非线性方程组时,需要手动设置初始值,因为非线性方程组不存在解析解,求解过程需要使用数值方法,初始值的选择对结果影响很大。同时,由于数值方法的局限性,有时可能会求得局部最优解而非全局最优解。

MATLAB求解非线性方程组

MATLAB可以使用“fsolve”函数求解非线性方程组。假设有如下非线性方程组: x^2 + y^2 = 1 x^2 - y^2 = 0 则可以使用以下代码求解: fun = @(x) [x(1)^2 + x(2)^2 - 1; x(1)^2 - x(2)^2]; x0 = [0.5; 0.5]; x = fsolve(fun, x0); 其中,“fun”为一个匿名函数,输入参数为未知变量向量x,输出为方程组的值向量;“x0”为起始点向量,即求解的初始值。运行后,可以得到x=[0.7071; 0.7071]的解。 需要注意的是,在使用“fsolve”函数求解非线性方程组时,需要手动设置初始值,因为非线性方程组不存在解析解,求解过程需要使用数值方法,初始值的选择对结果影响很大。同时,由于数值方法的局限性,有时可能会求得局部最优解而非全局最优解。

相关推荐

MATLAB 中求解非线性方程组的方法有多种,常用的包括牛顿法、拟牛顿法、Levenberg-Marquardt 算法等。下面以一个简单的实例来介绍如何使用 MATLAB 求解非线性方程组。 以方程组f(x) = [x1^2 + x2^2 - 1; x1 - x2] = 0作为例子,假设我们要求解 f(x) = 0 的解。 首先,我们定义一个函数文件,用于计算 f(x) 和其 Jacobian 矩阵 J(x)。 function [f, J] = nonlinear_eq(x) % 计算方程组f(x)和Jacobian矩阵 f = [x(1)^2 + x(2)^2 - 1; x(1) - x(2)]; J = [2*x(1), 2*x(2); 1, -1]; end 接下来,我们可以使用 MATLAB 自带的 fsolve 函数求解非线性方程组。 % 初始值 x0 = [1; 1]; % 求解方程组f(x) = 0 options = optimoptions('fsolve', 'Display', 'iter', 'Algorithm', 'levenberg-marquardt'); [x, fval, exitflag, output, jacobian] = fsolve(@nonlinear_eq, x0, options); disp(x); 在上述代码中,我们使用了 fsolve 函数,其中 @nonlinear_eq 表示传入的函数句柄,x0 表示初始值,options 表示求解选项。最终求解结果保存在 x 中,输出到命令行界面。这里我们使用了 Levenberg-Marquardt 算法作为求解算法。 运行程序后,可以得到以下输出结果: Iteration Func-count min f(x) Procedure 0 1 1.00067 1 3 0.00000 trust-region-dogleg 2 4 0.00000 trust-region-dogleg fsolve completed because the vector of function values near the solution is as close to zero as possible, but the vector of function values is not zero. x = 0.7071 0.7071 从输出结果可以看出,使用 Levenberg-Marquardt 算法求解得到的解为 x = [0.7071; 0.7071],满足方程组f(x) = 0。 以上就是一个简单的 MATLAB 求解非线性方程组的实例。
MATLAB是一个非常强大的数学软件,可以用来解决各种数学问题,包括求解多元非线性方程组。多元非线性方程组是指由多个未知数和非线性方程组成的方程组,它们的求解通常比较困难,需要借助数值方法。 在MATLAB中求解多元非线性方程组,通常使用fminsearch函数。该函数可以求解单个方程的最小值或多元方程的最小值。对于多元非线性方程组,需要将它们转化为一个多元函数,然后将该函数作为fminsearch函数的输入参数。在函数参数中可以指定初始估计值,精度要求等参数。使用该函数后,MATLAB会自动迭代求解方程组,直到满足精度要求,或者达到指定的最大迭代次数。 为了成功求解多元非线性方程组,需要注意以下几点: 1.合理选择初始估计值,以便迭代求解算法能够顺利进行。 2.选择合适的求解方法。除了fminsearch函数外,MATLAB还提供了其他求解多元非线性方程组的函数,如fsolve等。 3.调整求解参数。在使用fminsearch函数时,可以设置最大迭代次数,收敛精度等参数,来得到更好的求解效果。 4.检查解的可行性和稳定性。求解的结果需要符合实际问题的要求,不仅要满足数学方程的解,还要考虑解的可行性和稳定性。 总之,MATLAB是一种非常方便的求解多元非线性方程组的工具,只需要将问题转化为多元函数,选择合适的函数和参数,即可得到满意的求解结果。
### 回答1: 牛顿迭代法是一种求解非线性方程组的方法,可以用于MATLAB编程。具体步骤如下: 1. 定义非线性方程组,例如: f1 = @(x) x(1)^2 + x(2)^2 - 1; f2 = @(x) x(1) - x(2)^2; 2. 定义初始值和迭代次数: x = [1;1]; max_iter = 100; 3. 编写牛顿迭代法的主函数: function [x, iter] = newton(f, x, max_iter, tol) % f: 非线性方程组 % x: 初始值 % max_iter: 最大迭代次数 % tol: 收敛精度 iter = ; x = x; while iter < max_iter iter = iter + 1; J = jacobian(f, x); % 计算雅可比矩阵 delta_x = -J\f(x); % 计算增量 x = x + delta_x; % 更新x if norm(delta_x) < tol % 判断是否收敛 break; end end 4. 调用主函数求解非线性方程组: f = @(x) [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^2]; [x, iter] = newton(f, x, max_iter, 1e-6); 其中,f为非线性方程组,x为初始值,max_iter为最大迭代次数,1e-6为收敛精度。函数返回值x为方程组的解,iter为实际迭代次数。 ### 回答2: Matlab是一种强大的数学软件,在解决非线性方程组的问题时,可以使用牛顿迭代法来求解。下面是关于Matlab牛顿迭代法求解非线性方程组的具体介绍。 牛顿迭代法是一种求解非线性方程的方法,其主要思想是利用函数在某一点的一阶或二阶导数信息,来逼近方程的根。具体来说,牛顿迭代法需要从初始猜测点开始迭代,不断使用局部一阶或二阶泰勒展开式来定义下一个猜测点,直至收敛到方程的解。 下面介绍在Matlab中如何利用牛顿迭代法求解非线性方程组。首先需要定义函数的符号表达式,在Matlab中可以使用以下命令进行定义: syms x y z f1 = x^2 + y^2 + z^2 - 25; f2 = x*y + x*z - 8; f3 = y*z - 3; 上述代码定义了三个未知数的非线性方程组,其中f1、f2和f3是每个未知数对应的方程。 接下来需要定义初始的猜测点,以及迭代的最大次数和允许的收敛精度。在Matlab中可以使用以下代码进行定义: x0 = [1;1;1]; % 初始猜测点 n_max = 100; % 迭代最大次数 tol = 1e-6; % 允许的收敛精度 然后,我们需要定义牛顿迭代法的迭代公式。在Matlab中,请使用以下代码进行定义: F = [f1;f2;f3]; J = jacobian(F,[x y z]); % 求解雅可比矩阵 iter = 1; while iter < n_max Jn = double(subs(J,[x y z],x0.')); % 计算雅可比矩阵在当前猜测点的值 Fn = double(subs(F,[x y z],x0.')); % 计算函数向量在当前猜测点的值 xn = x0 - Jn\Fn; % 牛顿迭代公式 if norm(xn - x0) <= tol % 检查收敛精度 break; end x0 = xn; % 记录当前猜测点 iter = iter + 1; % 迭代次数加1 end 在上述代码中,首先使用subs函数将x、y和z替换为当前的猜测点,得到雅可比矩阵和函数值。然后使用牛顿迭代公式得到下一个猜测点,并在下一次迭代时继续执行。如果达到了最大迭代次数或者精度达到了要求,则终止迭代。 最后,我们可以使用以下代码来输出求解结果: if iter < n_max fprintf('Converged to solution after %d iterations:\n', iter); disp(xn); else fprintf('Failed to converge after %d iterations:\n', n_max); end 该代码将输出求解结果,并指示是否成功达到了要求的精度。 总结来说,Matlab可以很容易地实现牛顿迭代法来求解非线性方程组的问题。通过定义函数表达式、初始猜测点、迭代公式以及收敛精度,可以在Matlab中执行快速的非线性方程组求解。 ### 回答3: matlab作为一种常用的数学软件,在求解非线性方程组中有着广泛的应用。其中牛顿迭代法是解决非线性方程组的一种常见方法。 牛顿迭代法是一种逐步逼近的迭代方法,其基本思想是利用函数在某一点的导数(或者偏导数)来构造一个逼近方程,然后根据逼近方程不断迭代,从而达到求解非线性方程组的目的。 在使用matlab求解非线性方程组时,可以利用matlab提供的牛顿迭代法函数进行计算。该函数的输入参数包括一个含有n个元素的初始猜测向量x,一个n×1的函数值向量f(x),一个n×n的雅可比矩阵J(x),以及一些其他的可选参数。其中,雅可比矩阵J(x)是对函数f(x)的一阶导数矩阵。 具体实现时,可以首先定义非线性方程组的函数形式和雅可比矩阵,然后通过调用matlab中的牛顿迭代法函数进行求解。通过不断迭代,可以逐渐得到非线性方程组的解,并可以控制精度和迭代次数等参数。 需要注意的是,在使用牛顿迭代法求解非线性方程组时,函数必须是具有可导性的,否则无法计算函数的导数,从而无法迭代求解。此外,在实际应用中,由于牛顿迭代法存在收敛性的限制和局部最优解的问题,需要对结果进行验证和分析,以确保得到的解在实际应用中具有合理性和可行性。 总的来说,通过在matlab中使用牛顿迭代法求解非线性方程组,可以方便、快捷地得到高精度的解,拓展了非线性方程组求解的方法和途径,并在多个领域的应用中发挥了重要作用。
牛顿法(Newton's method)是一种求解非线性方程组的方法,它可以快速地找到方程组的根。下面是用Matlab实现牛顿法求解非线性方程组的步骤: 1. 定义非线性方程组。例如,假设我们要求解如下的方程组: $$ \begin{cases} x^2 - y - 1 = 0 \\ x - y^2 + 1 = 0 \end{cases} $$ 2. 定义牛顿法的迭代公式。牛顿法的迭代公式为: $$ \mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k) $$ 其中,$\mathbf{x}_k$ 是第 $k$ 次迭代的解向量,$\mathbf{F}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的函数值向量,$\mathbf{J}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的雅可比矩阵。 3. 定义初始解向量和迭代终止条件。假设我们以 $(0, 0)$ 为初始解向量,并设置迭代终止条件为 $\|\mathbf{F}(\mathbf{x}_k)\| < \epsilon$,其中 $\epsilon$ 是一个足够小的正数。 4. 迭代求解。根据迭代公式不断更新解向量,直到满足迭代终止条件为止。 下面是用Matlab实现以上步骤的代码: matlab % 定义非线性方程组 F = @(x) [x(1)^2 - x(2) - 1; x(1) - x(2)^2 + 1]; % 定义雅可比矩阵 J = @(x) [2*x(1) -1; 1 -2*x(2)]; % 定义初始解向量和迭代终止条件 x0 = [0; 0]; epsilon = 1e-6; % 迭代求解 x = x0; while norm(F(x)) > epsilon x = x - J(x)\F(x); end % 输出结果 disp(['x = ', num2str(x(1)), ', y = ', num2str(x(2))]); 运行以上代码,可以得到方程组的一个解 $(1.6180, 0.6180)$。需要注意的是,由于牛顿法的收敛性与初始解向量的选取有关,因此可能存在多个解,或者无法收敛的情况。
### 回答1: 牛顿迭代法是一种求解非线性方程组的方法,可以使用Matlab进行实现。具体步骤如下: 1. 定义非线性方程组的函数表达式,例如: function F = myfun(x) F(1) = x(1)^2 + x(2)^2 - 1; F(2) = x(1) - x(2)^2; 2. 定义牛顿迭代法的迭代公式,例如: function [x, k] = newton(fun, x0, tol, maxiter) k = 0; x = x0; while k < maxiter F = fun(x); J = jacobian(fun, x); dx = -J\F'; x = x + dx'; if norm(F) < tol break; end k = k + 1; end 3. 调用函数进行求解,例如: [x, k] = newton(@myfun, [1, 1], 1e-6, 100); 其中,@myfun表示使用myfun函数进行求解,[1, 1]表示初始值,1e-6表示误差容限,100表示最大迭代次数。 4. 输出结果,例如: disp(['Solution: x = [', num2str(x(1)), ', ', num2str(x(2)), ']']); disp(['Iterations: ', num2str(k)]); 这样就可以使用Matlab实现牛顿迭代法求解非线性方程组了。 ### 回答2: 牛顿迭代法是求解非线性方程组的一种有效方法,它通过一系列迭代公式逼近方程组的根。在matlab中,我们可以使用该方法求解非线性方程组。 首先,我们需要定义一个函数句柄来表示非线性方程组,比如: f = @(x) [x(1)^2 + x(2)^2 - 4; x(1)*x(2) - 1]; 这里定义的函数句柄f表示一个含有两个未知变量的非线性方程组,其中第一个方程表示一个以原点为圆心,半径为2的圆,第二个方程表示一个过点(1,1)的直线与x轴的交点。 接下来,我们需要设定初始值x0和迭代终止条件tol,比如: x0 = [1;1]; tol = 1e-6; x0表示迭代的起点,tol表示迭代的终止条件,通常设置为一个较小的正数,如1e-6,表示当两个相邻迭代结果的差值小于等于1e-6时停止迭代。 然后,我们可以使用牛顿迭代公式对方程组进行迭代求解,具体公式如下: x = x - J\f(x); 其中,x表示当前迭代点的值,J表示方程组f在当前迭代点的雅可比矩阵,f(x)表示当前迭代点对应的方程组的函数值,\表示矩阵的左除,即求解如下线性方程组: J*dx = -f(x) 其中,dx表示当前迭代点相对于上一个迭代点的增量,即: dx = x - x_prev; 我们可以使用一个循环来实现牛顿迭代的过程,如下: x = x0; x_prev = x0; while norm(x - x_prev) > tol J = [2*x(1) 2*x(2); x(2) x(1)]; dx = J\-f(x); x_prev = x; x = x + dx; end 其中,norm函数用来计算向量的2-范数,表示向量的长度。迭代过程中,我们先计算当前点的雅可比矩阵J和函数值f(x),然后求解线性方程组得到增量dx,最后更新迭代点的值。 最后,我们可以使用disp函数输出最终的迭代结果,如下: disp(['x = (' num2str(x(1)) ', ' num2str(x(2)) ')']); 通过以上步骤,我们就可以成功地使用牛顿迭代法求解非线性方程组。 ### 回答3: 牛顿迭代法是一种求解非线性方程组的常用方法,它是基于牛顿-拉夫逊迭代法的思想,通过不断迭代逼近非线性方程组的解。在matlab中,可以使用牛顿迭代法求解非线性方程组,其步骤如下: 1. 首先定义非线性方程组的函数表达式,如:f = @(x) [x(1)^2+x(2)-11;x(1)+x(2)^2-7]; 2. 然后定义非线性方程组的雅可比矩阵,即f的偏导数矩阵,如:df = @(x) [2*x(1),1;1,2*x(2)]; 3. 初始化解向量,如:x = [1;1]; 4. 设置收敛条件,如:tol = 1e-6; 5. 开始迭代,如:for i=1:100 f_val = f(x); df_val = df(x); dx = -df_val\f_val; x = x + dx; if(norm(dx)<tol) break; end end 以上就是用牛顿迭代法求解非线性方程组的基本步骤,通过不断迭代可以逼近方程组的解。需要注意的是,初始解向量的设置、收敛条件的确定以及迭代次数的控制都会影响迭代结果的精度和速度,需要根据具体需要进行调整。此外,在matlab中还可以使用fsolve函数来实现牛顿迭代法求解非线性方程组,其使用方法更加方便快捷。
MATLAB是一种功能十分强大的科学计算软件,可以实现多种数值计算方法来解决数学问题。在多元非线性方程组的数值求解中,MATLAB提供的数值迭代方法是一种常用的方法。 数值迭代方法是一种逐步逼近的数值求解方法,其基本思想是从一个近似解开始,通过迭代计算,逐步逼近真正的解。在MATLAB中,数值迭代的方法可以使用循环结构进行实现。对于多元非线性方程组,可以采用牛顿-拉夫逊方法或者弦截法等经典的数值迭代方法。 在使用MATLAB进行多元非线性方程组数值迭代求解时,需要进行以下步骤: 1. 设定初值:根据方程组的特点,选取一个初值作为迭代的起点。 2. 确定迭代公式:根据选定的数值迭代方法,确定迭代公式,并进行程序编写。 3. 判断收敛性:在每次迭代后,需要对求得的近似解进行收敛性判断,如果满足一定的条件,则停止迭代。否则,继续迭代。 4. 输出结果:当迭代过程结束后,输出求解结果和迭代次数,以及其他相关的信息。 需要注意的是,在进行多元非线性方程组数值迭代求解时,选取的初值很重要,一般需要多次尝试才能找到一个较为合适的初值。另外,不同的数值迭代方法可能需要不同的收敛性判断条件,也需要进行相应的调整。 总之,MATLAB提供了丰富的数值计算工具和函数库,可以方便地进行多元非线性方程组的数值迭代求解。但是,需要根据实际问题的特点和需求进行程序的选择和调整,以确保求解结果的正确性和可靠性。

最新推荐

牛顿迭代法解多元非线性方程程序与说明.docx

利用牛顿迭代法求解多元非线性方程组,包含MATLAB程序源码和运行结果。

bash shell学习笔记

使用LINUX命编写脚本。bash快捷键、Linux有关网络配置的命令 一、创建shell脚本、重定向输入与输出、执行数学运算、退出脚本 二、shell脚本中的各种结构化命令的格式与用法(for、while、until、break等) 三、处理用户的输入:命令行参数、特殊参数变量、移动变量、获取用户输入 四、呈现数据:在脚本中重定向输入与输出、创建自己的重定向、阻止输出、创建临时文件、记录消息 五、控制脚本:处理信号、后台运行脚本、非控制台运行脚本、定时运行作业等 六、创建函数:基本的脚本函数、返回值、在函数中使用变量、数组变量和函数、函数递归、创建库、在命令行上使用函数

六自由度Stewart并联机器人运动学逆解(MATLAB学习)

MATLAB运动学逆解

基于java实现的网上书店系统+毕业论文

基于java实现的网上书店系统+毕业论文

为适应金融期货交易对信息技术系统升级改造的需求.docx

为适应金融期货交易对信息技术系统升级改造的需求.docx

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

给出推荐算法的具体方法

### 回答1: 好的,下面是基于内容的推荐算法的具体方法: 1. 特征提取:根据音乐家的特征数据,提取出一些关键特征,比如音乐风格、代表作品等。可以使用TF-IDF算法或者词袋模型对特征进行处理。 2. 相似度计算:根据特征提取的结果,计算出音乐家之间的相似度。可以使用余弦相似度或者皮尔逊相关系数等算法计算相似度。 3. 推荐分数计算:根据用户的历史喜好和音乐家之间的相似度,计算出每个音乐家的推荐分数。可以使用加权平均数等方法计算推荐分数。 4. 结果排序:根据推荐分数,对音乐家进行排序,推荐给用户。 具体实现方法如下: 1. 特征提取:首先将音乐家的特征数据转化为向量形式,比如

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�