用matlab实现apriori算法
时间: 2023-09-13 18:11:30 浏览: 316
以下是用MATLAB实现Apriori算法的示例代码:
```matlab
% 载入数据
data = [
1, 3, 4;
2, 3, 5;
1, 2, 3, 5;
2, 5
];
% 设置最小支持度和最小置信度
min_support = 0.5;
min_confidence = 0.7;
% 获取所有不同的项
items = unique(data(:));
% 计算项集的支持度
supports = zeros(size(items));
for i = 1:numel(items)
supports(i) = sum(ismember(data, items(i)));
end
supports = supports / size(data, 1);
% 获取满足最小支持度的项集
frequent_items = items(supports >= min_support);
% 初始化频繁项集
frequent_sets = cell(1, 1);
frequent_sets{1} = frequent_items;
% 生成候选项集
k = 2;
while true
candidate_sets = {};
for i = 1:numel(frequent_sets{k-1})
for j = i+1:numel(frequent_sets{k-1})
candidate_set = union(frequent_sets{k-1}{i}, frequent_sets{k-1}{j});
if numel(candidate_set) == k && ~ismember(candidate_set, candidate_sets)
candidate_sets{end+1} = candidate_set;
end
end
end
if isempty(candidate_sets)
break;
end
% 计算候选项集的支持度
candidate_supports = zeros(size(candidate_sets));
for i = 1:numel(candidate_sets)
candidate_supports(i) = sum(all(ismember(data, candidate_sets{i}), 2));
end
candidate_supports = candidate_supports / size(data, 1);
% 获取满足最小支持度的项集
frequent_items = candidate_sets(candidate_supports >= min_support);
if isempty(frequent_items)
break;
end
% 更新频繁项集
frequent_sets{k} = frequent_items;
k = k + 1;
end
% 输出频繁项集
for k = 1:numel(frequent_sets)
for i = 1:numel(frequent_sets{k})
fprintf('Frequent %d-itemset: {%s}\n', k, num2str(frequent_sets{k}{i}));
end
end
% 生成关联规则
rules = {};
for k = 2:numel(frequent_sets)
for i = 1:numel(frequent_sets{k})
for j = 1:numel(frequent_sets{k}{i})
antecedent = setdiff(frequent_sets{k}{i}, frequent_sets{k}{i}(j));
consequent = frequent_sets{k}{i}(j);
confidence = sum(all(ismember(data, antecedent), 2) & ismember(data, consequent)) / sum(all(ismember(data, antecedent), 2));
if confidence >= min_confidence
rules{end+1} = struct('antecedent', antecedent, 'consequent', consequent, 'confidence', confidence);
end
end
end
end
% 输出关联规则
for i = 1:numel(rules)
fprintf('Rule: {%s} => {%d}, confidence: %.2f\n', num2str(rules{i}.antecedent), rules{i}.consequent, rules{i}.confidence);
end
```
这段代码实现了Apriori算法,可以通过调整 `min_support` 和 `min_confidence` 参数来设置最小支持度和最小置信度。该代码使用了一个 `struct` 数据结构来存储关联规则,其中 `antecedent` 和 `consequent` 表示规则的前件和后件,`confidence` 表示规则的置信度。
阅读全文