使用transformer实现光伏预测项目
时间: 2023-07-30 19:09:21 浏览: 365
光伏预测是一个时间序列预测问题,可以使用Transformer模型进行建模和预测。下面是一个简单的光伏预测示例代码:
```python
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
# 加载数据
data = pd.read_csv('pv_data.csv', index_col=0)
# 数据预处理
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data.values)
# 划分训练集和测试集
train_size = int(len(data_scaled) * 0.8)
train_data = data_scaled[:train_size]
test_data = data_scaled[train_size:]
# 定义超参数
input_size = 1
hidden_size = 16
num_layers = 2
dropout = 0.2
lr = 0.001
num_epochs = 100
# 定义Transformer模型
class TransformerModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(hidden_size, dropout)
encoder_layers = nn.TransformerEncoderLayer(hidden_size, nhead=8)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers)
self.encoder = nn.Linear(input_size, hidden_size)
self.decoder = nn.Linear(hidden_size, 1)
def forward(self, src):
src = self.encoder(src) * np.sqrt(self.hidden_size)
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
output = self.decoder(output)
return output
# 定义位置编码器
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
# 训练模型
model = TransformerModel(input_size, hidden_size, num_layers, dropout)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
for i in range(input_size, len(train_data)):
x = train_data[i - input_size:i, :]
y = train_data[i, :]
x = torch.from_numpy(x).float().unsqueeze(0)
y = torch.from_numpy(y).float()
optimizer.zero_grad()
output = model(x)
loss = criterion(output, y)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= (len(train_data) - input_size)
print('Epoch [{}/{}], Train Loss: {:.4f}'.format(epoch + 1, num_epochs, train_loss))
# 测试模型
model.eval()
test_loss = 0.0
predictions = []
with torch.no_grad():
for i in range(input_size, len(test_data)):
x = test_data[i - input_size:i, :]
y = test_data[i, :]
x = torch.from_numpy(x).float().unsqueeze(0)
y = torch.from_numpy(y).float()
output = model(x)
loss = criterion(output, y)
test_loss += loss.item()
predictions.append(output.detach().numpy().squeeze())
test_loss /= (len(test_data) - input_size)
rmse = np.sqrt(mean_squared_error(test_data[input_size:], predictions))
print('Test Loss: {:.4f}, RMSE: {:.4f}'.format(test_loss, rmse))
```
在这个示例中,我们使用 `pandas` 库加载了一个光伏发电量数据集,并使用 `sklearn` 库中的 `MinMaxScaler` 对数据进行预处理,将数据缩放到0到1的范围内。然后,我们将数据划分为训练集和测试集,并定义了一些超参数,包括输入大小、隐藏层大小、层数、dropout、学习率和训练轮数。
接下来,我们定义了一个Transformer模型,包括位置编码器和Transformer编码器。在训练模型时,我们使用均方误差作为损失函数,使用Adam优化器更新模型参数。在测试模型时,我们计算了测试集上的均方误差和均方根误差。
需要注意的是,这个示例只是一个简单的光伏预测示例,实际应用需要根据具体情况进行调整和优化。
阅读全文