java实现人工神经网络LSTM模型进行时间序列预测代码怎么写
时间: 2024-04-08 09:33:57 浏览: 176
以下是一个使用Java实现LSTM模型进行时间序列预测的简单代码示例:
```java
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.LSTM;
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.util.ArrayList;
import java.util.List;
public class LSTMTimeSeriesPrediction {
public static void main(String[] args) {
// 准备数据
int timeSteps = 10; // 时间步数
int inputSize = 1; // 输入大小
int hiddenSize = 20; // 隐藏层大小
int outputSize = 1; // 输出大小
int epochs = 100; // 迭代次数
// 创建训练数据集
List<Double> timeSeries = generateTimeSeries(); // 生成时间序列数据
List<DataSet> dataSets = new ArrayList<>();
for (int i = 0; i < timeSeries.size() - timeSteps - 1; i++) {
double[] input = new double[timeSteps];
double[] label = new double[outputSize];
for (int j = 0; j < timeSteps; j++) {
input[j] = timeSeries.get(i + j);
}
label[0] = timeSeries.get(i + timeSteps);
dataSets.add(new DataSet(Nd4j.create(input), Nd4j.create(label)));
}
DataSetIterator iterator = new ListDataSetIterator<>(dataSets, 1);
// 构建模型
NeuralNetConfiguration.Builder builder = new NeuralNetConfiguration.Builder();
builder.seed(123);
builder.weightInit(WeightInit.XAVIER);
builder.updater(new org.nd4j.linalg.learning.config.Adam(0.001));
builder.list()
.layer(new LSTM.Builder().nIn(inputSize).nOut(hiddenSize)
.activation(Activation.TANH).build())
.layer(new RnnOutputLayer.Builder(LossFunctions.LossFunction.MSE)
.activation(Activation.IDENTITY).nIn(hiddenSize).nOut(outputSize).build());
MultiLayerNetwork net = new MultiLayerNetwork(builder.build());
net.init();
// 训练模型
for (int i = 0; i < epochs; i++) {
iterator.reset();
net.fit(iterator);
}
// 使用模型进行预测
double[] input = new double[timeSteps];
for (int i = 0; i < timeSteps; i++) {
input[i] = timeSeries.get(timeSeries.size() - timeSteps + i);
}
double[] output = net.rnnTimeStep(Nd4j.create(input)).getDouble(0);
System.out.println("预测结果:");
for (double value : output) {
System.out.println(value);
}
}
// 生成时间序列数据(示例)
private static List<Double> generateTimeSeries() {
List<Double> timeSeries = new ArrayList<>();
for (int i = 0; i < 100; i++) {
timeSeries.add(Math.sin(i * 0.1));
}
return timeSeries;
}
}
```
请注意,此代码使用了 deeplearning4j 库来构建和训练LSTM模型,因此您需要将deeplearning4j库添加到您的项目依赖中。此代码仅作为示例,实际情况中您可能需要根据具体需求进行调整和扩展。
阅读全文