使用opencv 4.0.1 和python 3.8 将图像进行小波变换 coeffs = pywt.dwt2(gray, 'haar') cA, (cH, cV, cD) = coeffs 已知cH 为266 × 500 为什么执行cH1 = cH.astype(np.uint8) cH2 = cv2.convertScaleAb(cH) 后.cH1 显示正常图像 cH2显示的图像为纯黑色

时间: 2024-01-06 09:06:29 浏览: 30
这是因为 `cv2.convertScaleAb()` 函数的参数传递有误。该函数需要传入两个参数:输入数组和输出数组。你可以将代码改为如下形式: ``` cH1 = cH.astype(np.uint8) cH2 = np.zeros_like(cH1) cH2 = cv2.convertScaleAbs(cH, dst=cH2) ``` 这样,就可以正确地将小波变换后的系数数组转换为 OpenCV 可以显示的图像了。
相关问题

使用opencv 4.0.1 和python 3.8 将图像进行小波变换 coeffs = pywt.dwt2(gray, 'haar') cA, (cH, cV, cD) = coeffs 已知cH 为266 × 500 如何再使用小波逆变换 完美复原图像

要使用小波逆变换进行完美的图像复原,可以使用以下步骤: 1. 将小波系数放回到一个元组中:coeffs = (cA, (cH, cV, cD))。 2. 使用小波逆变换函数pywt.idwt2()将元组作为参数,得到重建后的图像。代码如下: ```python import pywt import numpy as np import cv2 # 读取图像 img = cv2.imread('image.jpg') # 将图像转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 进行小波变换 coeffs = pywt.dwt2(gray, 'haar') cA, (cH, cV, cD) = coeffs # 将小波系数放回到一个元组中 coeffs = (cA, (cH, cV, cD)) # 使用小波逆变换函数将元组作为参数,得到重建后的图像 reconstructed = pywt.idwt2(coeffs, 'haar') # 将重建后的图像转换为uint8类型 reconstructed = np.uint8(reconstructed) # 显示原始图像和重建后的图像 cv2.imshow('Original', img) cv2.imshow('Reconstructed', reconstructed) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码将读取一张图像,然后将它转换为灰度图像,并进行小波变换。接着,将小波系数放回到一个元组中,并使用小波逆变换函数重建图像。最后,将重建后的图像转换为uint8类型并显示原始图像和重建后的图像。 需要注意的是,由于小波变换是一种有损压缩技术,因此重建后的图像可能会有一些细微的失真。如果需要更好的重建结果,可以尝试使用其他小波基函数或调整小波变换的参数。

图像处理 使用python 3.8和opencv 4.0.1 图像进行小波变换coeffs = pywt.dwt2(gray, 'haar')、cA, (cH, cV, cD) = coeffs 如何进行逆变换 将逆变换的图像显示出来 请示例

使用 PyWavelets 库进行小波变换的逆变换可以使用 idwt2() 函数,使用 OpenCV 进行图像显示可以使用 imshow() 函数。下面是一个简单的示例代码: ```python import cv2 import pywt import numpy as np # 读取图像 img = cv2.imread('lena.png', cv2.IMREAD_GRAYSCALE) # 进行小波变换 coeffs = pywt.dwt2(img, 'haar') cA, (cH, cV, cD) = coeffs # 将 cA 系数设为 0,只保留细节系数 cA = np.zeros_like(cA) # 进行小波逆变换 coeffs = cA, (cH, cV, cD) reconstructed_img = pywt.idwt2(coeffs, 'haar') # 将图像转换为整型并显示出来 reconstructed_img = reconstructed_img.astype(np.uint8) cv2.imshow('Reconstructed Image', reconstructed_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 代码中首先读取了一张灰度图像,并使用 pywt.dwt2() 函数进行小波变换。将得到的系数分别赋值给 cA、cH、cV、cD 四个变量。 为了进行小波逆变换,我们将 cA 系数设为 0,只保留细节系数,然后使用 pywt.idwt2() 函数进行反变换,得到重构后的图像。 最后,将重构后的图像转换为整型并使用 OpenCV 的 imshow() 函数显示出来。

相关推荐

最新推荐

recommend-type

使用Python和OpenCV检测图像中的物体并将物体裁剪下来

主要介绍了使用Python和OpenCV检测图像中的物体并将物体裁剪下来,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

对python opencv 添加文字 cv2.putText 的各参数介绍

今天小编就为大家分享一篇对python opencv 添加文字 cv2.putText 的各参数介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

win7下 python3.6 安装opencv 和 opencv-contrib-python解决 cv2.xfeatures2d.SIFT_create() 的问题

主要介绍了win7下 python3.6 安装opencv 和 opencv-contrib-python解决 cv2.xfeatures2d.SIFT_create() 的问题,需要的朋友可以参考下
recommend-type

python opencv 图像拼接的实现方法

高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图。这篇文章主要介绍了python opencv 图像拼接,需要的朋友可以参考下
recommend-type

“推荐系统”相关资源推荐

推荐了国内外对推荐系统的讲解相关资源
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。