ddpg算法python源代码
时间: 2024-10-18 22:10:30 浏览: 41
DDPG(Deterministic Policy Gradient)是一种基于深度学习的强化学习算法,它结合了深度Q网络(DQN)的思想和Actor-Critic架构。这个算法主要用于连续动作空间的问题。
在Python中,你可以使用一些深度学习库如TensorFlow或PyTorch来实现DDPG。以下是一个简化的框架结构:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense
class Actor(tf.keras.Model):
# 创建Actor网络
def __init__(self, state_size, action_size, hidden_units=(400, 300)):
super(Actor, self).__init__()
self.l1 = Dense(hidden_units[0], activation='relu', input_dim=state_size)
self.l2 = Dense(hidden_units[1], activation='relu')
self.mu_layer = Dense(action_size, activation='tanh')
def call(self, state):
x = self.l1(state)
x = self.l2(x)
mu = self.mu_layer(x)
return mu
class Critic(tf.keras.Model):
# 创建Critic网络
def __init__(self, state_size, action_size, hidden_units=(400, 300)):
super(Critic, self).__init__()
self.l1 = Dense(hidden_units[0], activation='relu', input_dim=state_size + action_size)
self.l2 = Dense(hidden_units[1], activation='relu')
self.q_value_layer = Dense(1)
def call(self, state, action):
x = tf.concat([state, action], axis=-1)
x = self.l1(x)
x = self.l2(x)
q_value = self.q_value_layer(x)
return q_value
# 示例代码中如何使用这些模型
def ddpg_train(env, actor, critic, replay_buffer, batch_size, num_episodes, learning_rate_actor, learning_rate_critic):
for episode in range(num_episodes):
# 环境互动...
# 存储经验和更新策略...
# 执行训练步骤...
# 更新目标网络...
# 训练结束后,可以保存模型...
```
这只是一个基础的框架,实际代码会更复杂,涉及到环境交互、经验回放、策略优化以及目标网络等关键部分。如果你需要完整的开源代码库,可以查看RL库如Stable Baselines3或HERO,它们包含详细的DDPG实现。
阅读全文