openpose、mediapipe和posenet实现人体姿态估计算法对比
时间: 2023-09-26 09:05:38 浏览: 874
基于openpose实现人体姿态估计
5星 · 资源好评率100%
OpenPose、MediaPipe和PoseNet都是比较流行的人体姿态估计算法,它们各有优点和适用场景。
OpenPose是基于深度学习的多人姿态估计算法,可以同时检测多个人的关键点,具有较高的准确性和鲁棒性。OpenPose可以处理多种姿势和动作,且支持多种输入数据类型,包括RGB图像、深度图像和点云数据等。但OpenPose的计算量较大,需要较高的计算资源。
MediaPipe是Google推出的一款多模态机器学习框架,其中包括人体姿态估计模块。与OpenPose相比,MediaPipe的运行速度更快,可以在移动设备上实时运行。此外,MediaPipe还提供了姿态跟踪和手势识别等功能。
PoseNet是由Google开发的一种基于深度学习的单人姿态估计算法,可以在浏览器中实时运行。相比于OpenPose和MediaPipe,PoseNet的模型较小,运行速度更快,但是只能处理单个人的姿态估计。
综上所述,选择哪种人体姿态估计算法取决于具体应用场景和需求。如果需要检测多个人的姿态,可以选择OpenPose;如果需要在移动设备上实时运行,可以选择MediaPipe;如果只需要处理单个人的姿态估计,可以选择PoseNet。
阅读全文