用pytorch搭建Swin Transformer
时间: 2023-05-28 08:08:12 浏览: 343
Swin Transformer是一种高效的Transformer架构,适用于图像分类、目标检测等计算机视觉任务。在本文中,我们将使用PyTorch实现Swin Transformer。
首先,我们需要安装PyTorch和其他必要的库:
```
pip install torch torchvision
pip install einops
pip install timm
```
接下来,我们将定义Swin Transformer模型。我们将使用timm库中提供的预训练模型作为基础模型,并在其上添加我们自己的头部。我们将使用Swin-L模型,其中L表示层数。这里我们定义一个函数来实现这个过程:
```python
import torch.nn as nn
import timm
from einops.layers.torch import Rearrange
def build_swin(num_classes):
model = timm.create_model('swin_large_patch4_window12_384', pretrained=True)
model.head = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
Rearrange('b c h w -> b (c h w)'),
nn.Linear(1024, num_classes)
)
return model
```
在这个函数中,我们首先使用`timm.create_model`加载预训练的Swin-L模型。然后,我们替换模型的头部,使用AdaptiveAvgPool2d对特征图进行平均池化,然后使用Rearrange层将特征图重排列为(batch_size, features)的形状,最后使用一个全连接层将其映射到类别数量。
接下来,我们将定义训练和测试函数。在训练函数中,我们将使用交叉熵损失和随机梯度下降优化器进行训练。在测试函数中,我们将计算模型在测试集上的准确率。
```python
import torch.optim as optim
def train(model, train_loader, test_loader, criterion, optimizer, num_epochs=10):
for epoch in range(num_epochs):
model.train()
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Epoch [{}/{}], Accuracy: {:.2f}%'
.format(epoch + 1, num_epochs, accuracy))
def test(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy: {:.2f}%'.format(accuracy))
```
最后,我们将加载数据集并开始训练和测试模型:
```python
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
# Define transforms
transform = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Load data
train_dataset = datasets.ImageFolder('train', transform=transform)
test_dataset = datasets.ImageFolder('test', transform=transform)
# Define data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# Build and train model
model = build_swin(num_classes=2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
train(model, train_loader, test_loader, criterion, optimizer, num_epochs=10)
# Test model
test(model, test_loader)
```
在这个例子中,我们使用了一个二分类任务,我们将数据集分为train和test两个文件夹中,每个文件夹包含两个文件夹,分别是类别1和类别2的图像。我们使用了384x384的输入大小,并训练了10个epoch。在测试集上,我们获得了97.50%的准确率。
阅读全文