python对dataframe中数据求和、累积和、均值、标准差、方差、
时间: 2023-07-10 18:38:25 浏览: 132
Python中的pandas库提供了很多函数来对DataFrame进行统计分析,包括求和、累积和、均值、标准差、方差等。下面是一些常用的函数:
1. 求和:使用`sum()`函数,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.sum())
```
输出:
```
A 6
B 15
dtype: int64
```
2. 累积和:使用`cumsum()`函数,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.cumsum())
```
输出:
```
A B
0 1 4
1 3 9
2 6 15
```
3. 均值:使用`mean()`函数,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.mean())
```
输出:
```
A 2.0
B 5.0
dtype: float64
```
4. 标准差:使用`std()`函数,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.std())
```
输出:
```
A 1.0
B 1.0
dtype: float64
```
5. 方差:使用`var()`函数,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.var())
```
输出:
```
A 1.0
B 1.0
dtype: float64
```
阅读全文