把每一步的代码都实现
时间: 2024-12-16 13:15:36 浏览: 3
用py实现代码雨的效果
当然,以下是逐步实现每个关键步骤的代码示例,假设我们已经将数据集分割成了`X_train`, `y_train`, `X_test`和`y_test`:
### 1. 加载数据
```python
import pandas as pd
data = pd.read_csv('kc_house_data.csv')
# 提取特征和目标变量
X = data.drop('price', axis=1) # 特征
y = data['price'] # 目标变量
```
### 2. 数据预处理
```python
from sklearn.impute import SimpleImputer
# 缺失值处理
imputer = SimpleImputer(strategy='mean')
X.fillna(imputer.fit_transform(X), inplace=True)
# 可能还需要其他数据清理步骤,比如转换类别变量
```
### 3. 特征工程
```python
# 示例,这里假设有些特征需要转换成合适的数据类型
if 'date' in X.columns:
X['date'] = pd.to_datetime(X['date'])
```
### 4. 划分数据集
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
### 5. 决策树模型
```python
from sklearn.tree import DecisionTreeRegressor
dtree = DecisionTreeRegressor()
dtree.fit(X_train, y_train)
```
### 6. 随机森林模型
```python
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators=100)
rf.fit(X_train, y_train)
```
### 7. GBDT模型
```python
from sklearn.ensemble import GradientBoostingRegressor
gbr = GradientBoostingRegressor(random_state=42)
gbr.fit(X_train, y_train)
```
### 8. 模型评估
```python
from sklearn.metrics import mean_squared_error, r2_score
y_pred_dt = dtree.predict(X_test)
print("Decision Tree R^2:", r2_score(y_test, y_pred_dt))
y_pred_rf = rf.predict(X_test)
print("Random Forest R^2:", r2_score(y_test, y_pred_rf))
y_pred_gbr = gbr.predict(X_test)
print("GBDT R^2:", r2_score(y_test, y_pred_gbr))
```
### 9. 超参数调优(此处仅作示例,可能用GridSearchCV)
```python
from sklearn.model_selection import GridSearchCV
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20]
}
grid_search_rf = GridSearchCV(rf, param_grid, cv=5)
grid_search_rf.fit(X_train, y_train)
best_rf = grid_search_rf.best_estimator_
```
### 10. 最终预测
```python
final_pred = best_rf.predict(X_test)
```
阅读全文