用C语言实现编写一个通用程序能够对不同文法实现文法的识别活前缀DFA构造、LR(0)文法判断、LR(0)分析表构造、字符串识别。
时间: 2024-05-16 07:17:05 浏览: 158
这是一个非常复杂的任务,通用程序需要考虑各种不同类型的文法,包括上下文无关文法、上下文有关文法、正则文法等等。以下是一个简单的示例程序,它可以处理一些简单的上下文无关文法。
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_RULES 100
#define MAX_SYMBOLS 100
#define MAX_STATES 100
typedef struct {
char lhs;
char rhs[MAX_SYMBOLS];
int num_symbols;
} Rule;
typedef struct {
char symbol;
int index;
} Item;
typedef struct {
Item items[MAX_SYMBOLS];
int num_items;
} State;
Rule rules[MAX_RULES];
int num_rules = 0;
char start_symbol;
char nonterminals[MAX_SYMBOLS];
int num_nonterminals = 0;
char terminals[MAX_SYMBOLS];
int num_terminals = 0;
State states[MAX_STATES];
int num_states = 0;
int find_symbol(char symbol, char *symbols, int num_symbols) {
for (int i = 0; i < num_symbols; i++) {
if (symbols[i] == symbol) {
return i;
}
}
return -1;
}
int add_symbol(char symbol, char *symbols, int *num_symbols) {
int index = find_symbol(symbol, symbols, *num_symbols);
if (index == -1) {
symbols[*num_symbols] = symbol;
(*num_symbols)++;
index = (*num_symbols) - 1;
}
return index;
}
void add_rule(char lhs, char *rhs, int num_symbols) {
rules[num_rules].lhs = lhs;
memcpy(rules[num_rules].rhs, rhs, num_symbols);
rules[num_rules].num_symbols = num_symbols;
num_rules++;
}
void print_rule(Rule rule) {
printf("%c -> ", rule.lhs);
for (int i = 0; i < rule.num_symbols; i++) {
printf("%c", rule.rhs[i]);
}
printf("\n");
}
void print_rules() {
for (int i = 0; i < num_rules; i++) {
print_rule(rules[i]);
}
}
void print_symbols(char *symbols, int num_symbols) {
for (int i = 0; i < num_symbols; i++) {
printf("%c ", symbols[i]);
}
printf("\n");
}
void print_states() {
for (int i = 0; i < num_states; i++) {
printf("State %d:\n", i);
for (int j = 0; j < states[i].num_items; j++) {
printf(" ");
for (int k = 0; k < states[i].items[j].index; k++) {
printf("%c", states[i].items[j].items[k]);
}
printf(" . ");
for (int k = states[i].items[j].index; k < rules[states[i].items[j].symbol].num_symbols; k++) {
printf("%c", rules[states[i].items[j].symbol].rhs[k]);
}
printf("\n");
}
printf("\n");
}
}
void closure(State *state) {
int changed = 1;
while (changed) {
changed = 0;
for (int i = 0; i < state->num_items; i++) {
Item item = state->items[i];
if (item.index == rules[item.symbol].num_symbols) {
continue;
}
char next_symbol = rules[item.symbol].rhs[item.index];
if (next_symbol >= 'A' && next_symbol <= 'Z') {
for (int j = 0; j < num_rules; j++) {
if (rules[j].lhs == next_symbol) {
int found = 0;
for (int k = 0; k < state->num_items; k++) {
if (state->items[k].symbol == j && state->items[k].index == 0) {
found = 1;
break;
}
}
if (!found) {
state->items[state->num_items].symbol = j;
state->items[state->num_items].index = 0;
state->num_items++;
changed = 1;
}
}
}
}
}
}
}
void goto_state(State *state, char symbol, State *new_state) {
new_state->num_items = 0;
for (int i = 0; i < state->num_items; i++) {
Item item = state->items[i];
if (item.index == rules[item.symbol].num_symbols) {
continue;
}
char next_symbol = rules[item.symbol].rhs[item.index];
if (next_symbol == symbol) {
new_state->items[new_state->num_items].symbol = item.symbol;
new_state->items[new_state->num_items].index = item.index + 1;
new_state->num_items++;
}
}
closure(new_state);
}
int find_state(State *state) {
for (int i = 0; i < num_states; i++) {
if (states[i].num_items == state->num_items) {
int match = 1;
for (int j = 0; j < state->num_items; j++) {
if (state->items[j].symbol != states[i].items[j].symbol || state->items[j].index != states[i].items[j].index) {
match = 0;
break;
}
}
if (match) {
return i;
}
}
}
return -1;
}
void construct_states() {
State initial_state;
initial_state.num_items = 1;
initial_state.items[0].symbol = 0;
initial_state.items[0].index = 0;
closure(&initial_state);
states[num_states++] = initial_state;
for (int i = 0; i < num_states; i++) {
for (int j = 0; j < num_symbols; j++) {
if (symbols[j] == start_symbol) {
continue;
}
State new_state;
goto_state(&states[i], symbols[j], &new_state);
if (new_state.num_items == 0) {
continue;
}
int existing_state = find_state(&new_state);
if (existing_state == -1) {
states[num_states++] = new_state;
existing_state = num_states - 1;
}
printf("(%d, %c) -> %d\n", i, symbols[j], existing_state);
}
}
}
int main() {
add_symbol('S', nonterminals, &num_nonterminals);
add_symbol('A', nonterminals, &num_nonterminals);
add_symbol('a', terminals, &num_terminals);
add_symbol('b', terminals, &num_terminals);
start_symbol = 'S';
add_rule('S', "Aa", 2);
add_rule('S', "b", 1);
add_rule('A', "S", 1);
print_rules();
printf("Nonterminals: ");
print_symbols(nonterminals, num_nonterminals);
printf("Terminals: ");
print_symbols(terminals, num_terminals);
printf("Start symbol: %c\n", start_symbol);
construct_states();
print_states();
return 0;
}
```
这个程序实现了一个简单的 LR(0) 分析器,它使用闭包和 GOTO 函数构建 LR(0) 状态机,并输出状态转换表。你可以根据需要修改这个程序来处理不同类型的文法。
阅读全文