将以下代码转化为Paddle框架写法class BasicLayer(nn.Module): def __init__(self, net_depth, dim, depth, kernel_size=3, conv_layer=ConvLayer, norm_layer=nn.BatchNorm2d, gate_act=nn.Sigmoid): super().__init__() self.dim = dim self.depth = depth # build blocks self.blocks = nn.ModuleList([ BasicBlock(net_depth, dim, kernel_size, conv_layer, norm_layer, gate_act) for i in range(depth)]) def forward(self, x): for blk in self.blocks: x = blk(x) return x
时间: 2023-03-10 17:43:58 浏览: 142
class BasicLayer(paddle.nn.Layer):
def __init__(self, net_depth, dim, depth, kernel_size=3, conv_layer=paddle.nn.Conv2D, norm_layer=paddle.nn.BatchNorm, gate_act=paddle.nn.Sigmoid):
super(BasicLayer, self).__init__()
self.dim = dim
self.depth = depth
相关问题
class BasicBlock(nn.Module): def __init__(self, net_depth, dim, kernel_size=3, conv_layer=ConvLayer, norm_layer=nn.BatchNorm2d, gate_act=nn.Sigmoid): super().__init__() self.norm = norm_layer(dim) self.conv = conv_layer(net_depth, dim, kernel_size, gate_act) def forward(self, x): identity = x x = self.norm(x) x = self.conv(x) x = identity + x return x转化为Paddle框架写法
class BasicBlock(fluid.dygraph.Layer):
def __init__(self, net_depth, dim, kernel_size=3, conv_layer=ConvLayer, norm_layer=nn.BatchNorm2d, gate_act=fluid.dygraph.nn.functional.sigmoid):
super(BasicBlock, self).__init__()
self.norm = norm_layer(dim)
self.conv = conv_layer(net_depth, dim, kernel_size, gate_act)
def forward(self, x):
identity = x
x = self.norm(x)
x = self.conv(x)
x = identity + x
return x
补全以下代码class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() return x
class LeNet(paddle.nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.fc1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
self.fc2 = paddle.nn.Linear(in_features=120, out_features=84)
self.fc3 = paddle.nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = paddle.nn.functional.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = paddle.nn.functional.relu(x)
x = self.max_pool2(x)
x = paddle.reshape(x, [x.shape[0], -1])
x = self.fc1(x)
x = paddle.nn.functional.relu(x)
x = self.fc2(x)
x = paddle.nn.functional.relu(x)
x = self.fc3(x)
return x
阅读全文