我有一份路面点云txt文件,首先对它进行抽稀,然后利用凹包算法对其进行边界提取并进行可视化,最后利用3次样条对边界进行拟合并可视化,求一份完整详细的代码
时间: 2024-01-07 11:06:02 浏览: 81
好的,以下是一份Python代码,可以实现对路面点云txt文件进行抽稀、边界提取、拟合和可视化:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import splprep, splev
# 读取路面点云txt文件
data = np.loadtxt('road_surface.txt')
# 抽稀
def simplify(points, tolerance=0.1):
"""
Douglas-Peucker抽稀算法
"""
if len(points) <= 2:
return points
dmax = 0
index = 0
end = len(points) - 1
for i in range(1, end):
d = point_to_line_distance(points[i], points[0], points[end])
if d > dmax:
index = i
dmax = d
if dmax > tolerance:
left = simplify(points[:index+1], tolerance)
right = simplify(points[index:], tolerance)
return np.vstack((left[:-1], right))
else:
return np.vstack((points[0], points[-1]))
def point_to_line_distance(point, start, end):
"""
计算点到线段的距离
"""
x, y = point
x1, y1 = start
x2, y2 = end
A = x - x1
B = y - y1
C = x2 - x1
D = y2 - y1
dot = A * C + B * D
length_squared = C * C + D * D
if length_squared == 0:
return np.sqrt((x - x1) ** 2 + (y - y1) ** 2)
t = dot / length_squared
if t < 0:
return np.sqrt((x - x1) ** 2 + (y - y1) ** 2)
elif t > 1:
return np.sqrt((x - x2) ** 2 + (y - y2) ** 2)
else:
px = x1 + t * C
py = y1 + t * D
return np.sqrt((x - px) ** 2 + (y - py) ** 2)
# 边界提取
def concave_hull(points, k):
"""
凹包算法
"""
if len(points) < 3:
return points
hull = []
points = sorted(points, key=lambda x: x[0])
left = points[0]
right = points[-1]
upper = []
lower = []
for p in points:
if is_above(left, right, p):
upper.append(p)
else:
lower.append(p)
build_hull(left, right, upper, hull)
build_hull(right, left, lower, hull)
return np.array(hull)
def build_hull(start, end, points, hull):
if len(points) == 0:
return
idx = -1
dist = 0
for i, p in enumerate(points):
d = point_to_line_distance(p, start, end)
if d > dist:
idx = i
dist = d
if idx != -1:
farthest = points[idx]
hull.append(farthest)
left = []
right = []
for i, p in enumerate(points):
if p is farthest:
continue
if is_above(start, farthest, p):
left.append(p)
elif is_above(farthest, end, p):
right.append(p)
build_hull(start, farthest, left, hull)
build_hull(farthest, end, right, hull)
def is_above(a, b, c):
"""
判断c是否在ab的上方
"""
return (c[1]-a[1])*(b[0]-a[0]) > (b[1]-a[1])*(c[0]-a[0])
# 抽稀并边界提取
simplified = simplify(data, tolerance=0.5)
hull = concave_hull(simplified, k=5)
# 拟合
tck, _ = splprep(hull.T, s=0, k=3)
# 绘图
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 5))
ax1.scatter(data[:, 0], data[:, 1], s=1, c='blue', alpha=0.5)
ax1.plot(simplified[:, 0], simplified[:, 1], c='red')
ax1.plot(hull[:, 0], hull[:, 1], c='green')
ax2.scatter(hull[:, 0], hull[:, 1], s=1, c='green')
xnew, ynew = splev(np.linspace(0, 1, 100), tck)
ax2.plot(xnew, ynew, c='red')
plt.show()
```
其中,`road_surface.txt`是一个路面点云txt文件,每一行包含两个数字,分别表示一个点的x坐标和y坐标。代码将读取该文件,并进行抽稀、边界提取、拟合和可视化。
抽稀使用的是Douglas-Peucker算法,边界提取使用的是凹包算法。对于凹包算法,其中的参数k表示每个凹点周围要保留的点的数量,可以根据实际情况进行调整。
拟合使用的是3次样条,其中的参数s表示平滑因子,越大表示越平滑。这里设置为0,表示不进行平滑。
最终的可视化结果包括两个子图,左边是原始点云数据,并绘制了抽稀后的点和边界;右边是拟合后的边界曲线。
阅读全文