熟悉sklearn中的集成方法的使用,使用mnist数据采用随机森林、Adaboos、梯度提升树构建分类模型,掌握多模型投票方法的原理和使用代码实现
时间: 2024-02-16 14:02:42 浏览: 73
好的,下面是使用sklearn中的集成方法构建分类模型和多模型投票的代码实现,包括随机森林、Adaboost和梯度提升树的分类模型构建、训练和评估,以及多模型投票方法的实现:
```python
from sklearn.datasets import load_digits
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, VotingClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score
import numpy as np
import matplotlib.pyplot as plt
# 加载MNIST数据集
digits = load_digits()
# 数据归一化
scaler = StandardScaler()
X = scaler.fit_transform(digits.data)
y = digits.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建随机森林模型
rf_clf = RandomForestClassifier(n_estimators=100, max_depth=15, random_state=42)
# 构建Adaboost模型
ada_clf = AdaBoostClassifier(n_estimators=100, learning_rate=0.5, random_state=42)
# 构建梯度提升树模型
gb_clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.5, max_depth=5, random_state=42)
# 训练模型
rf_clf.fit(X_train, y_train)
ada_clf.fit(X_train, y_train)
gb_clf.fit(X_train, y_train)
# 预测测试集结果
rf_pred = rf_clf.predict(X_test)
ada_pred = ada_clf.predict(X_test)
gb_pred = gb_clf.predict(X_test)
# 计算模型准确率、精确率和召回率
rf_acc = accuracy_score(y_test, rf_pred)
rf_prec = precision_score(y_test, rf_pred, average='weighted')
rf_recall = recall_score(y_test, rf_pred, average='weighted')
ada_acc = accuracy_score(y_test, ada_pred)
ada_prec = precision_score(y_test, ada_pred, average='weighted')
ada_recall = recall_score(y_test, ada_pred, average='weighted')
gb_acc = accuracy_score(y_test, gb_pred)
gb_prec = precision_score(y_test, gb_pred, average='weighted')
gb_recall = recall_score(y_test, gb_pred, average='weighted')
print(f"随机森林准确率:{rf_acc:.4f},精确率:{rf_prec:.4f},召回率:{rf_recall:.4f}")
print(f"Adaboost准确率:{ada_acc:.4f},精确率:{ada_prec:.4f},召回率:{ada_recall:.4f}")
print(f"梯度提升树准确率:{gb_acc:.4f},精确率:{gb_prec:.4f},召回率:{gb_recall:.4f}")
# 多模型投票
voting_clf = VotingClassifier(estimators=[('rf', rf_clf), ('ada', ada_clf), ('gb', gb_clf)], voting='hard')
voting_clf.fit(X_train, y_train)
# 预测测试集结果
voting_pred = voting_clf.predict(X_test)
# 计算模型准确率、精确率和召回率
voting_acc = accuracy_score(y_test, voting_pred)
voting_prec = precision_score(y_test, voting_pred, average='weighted')
voting_recall = recall_score(y_test, voting_pred, average='weighted')
print(f"多模型投票准确率:{voting_acc:.4f},精确率:{voting_prec:.4f},召回率:{voting_recall:.4f}")
```
在上述代码中,我们使用了sklearn中的RandomForestClassifier、AdaBoostClassifier和GradientBoostingClassifier类来构建三种不同的集成模型,使用fit()函数对模型进行训练,使用predict()函数对测试集进行预测,使用sklearn.metrics模块中的accuracy_score、precision_score和recall_score函数计算模型的准确率、精确率和召回率等指标。最后,我们使用sklearn.ensemble模块中的VotingClassifier类实现多模型投票,并使用同样的方法计算模型指标。
阅读全文