stm32 定时器控制adc CUBE

时间: 2024-08-13 18:09:59 浏览: 36
STM32系列微控制器中的定时器(Timer)常常被用来同步ADC(模拟到数字转换器)的操作,特别是在采样周期需要精确控制的应用中。CUBE库,全称CubeMX,是一个图形化工具和代码生成器,专为STM32设备设计,简化了硬件配置和驱动程序的设置。 在使用STM32定时器控制ADC的过程中,通常的步骤包括: 1. **配置定时器**: - 在CUBE库中选择合适的定时器资源,比如TIM1、TIM2或TIM3等。 - 设置定时器的工作模式,如PWM模式或者自由运行模式,以便产生定时脉冲信号。 - 配置定时器的预分频器、计数器值,以及中断参数。 2. **配置ADC接口**: - 在CUBE配置ADC模块,选择适当的通道和模数转换速率(AD conversion rate)。 - 设置DMA(直接内存访问)选项,如果需要的话,可以利用DMA传输采集的数据,提高数据处理速度。 3. **关联定时器与ADC**: - 将定时器的中断与ADC的开始/结束转换事件关联起来,确保在每个预定的时间点启动ADC转换。 4. **编写主程序**: - 在主程序中初始化定时器和ADC,并在定时器中断服务例程中触发ADC转换。 5. **数据处理**: - 当ADC完成转换后,可以通过中断处理程序读取转换结果。 相关问题: 1. CUBE库如何帮助开发者快速设置定时器和ADC配合? 2. STM32的哪种定时器常用于精准控制ADC的采样时间? 3. 如何在CUBE中设置定时器中断以触发ADC转换?
相关问题

STM32 定时器触发ADC

在STM32中,可以通过定时器触发ADC实现周期性的电压采样。以下是一个基于STM32Cube HAL库的示例程序: 1. 配置ADC ```C++ ADC_HandleTypeDef hadc1; void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; // 初始化ADC hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } // 配置ADC通道 sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } ``` 在初始化函数中,设置ADC的采样模式为连续转换,外部触发源为定时器2触发,并配置ADC通道为ADC_CHANNEL_0。 2. 配置定时器 ```C++ TIM_HandleTypeDef htim2; void MX_TIM2_Init(void) { TIM_MasterConfigTypeDef sMasterConfig = {0}; // 初始化定时器 htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 10000; // 设置定时器周期为10ms htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } // 配置定时器触发ADC sMasterConfig.MasterOutputTrigger = TIM_TRGO_ADC1; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } } ``` 在初始化函数中,设置定时器的时钟分频为1,周期为10ms,并将其配置为触发ADC的外部触发源。 3. 启动定时器和ADC ```C++ HAL_TIM_Base_Start(&htim2); // 启动定时器 HAL_ADC_Start(&hadc1); // 启动ADC ``` 在主函数中,启动定时器和ADC即可开始周期性的电压采样。在每个定时器周期结束时,定时器会触发一次ADC转换,从而实现周期性的电压采样。

stm32HAL库 定时器 adc dma

stm32H7 HAL库可以使用定时器触发多通道ADC采样,同时使用DMA进行数据传输。在配置环境时,需要修改代码中的ADC通道和通道个数。可以使用以下代码进行测试: ``` #define DMA_BUF_SIZE 27 volatile uint16_t DMABuf1[DMA_BUF_SIZE]={0}; //线性校正 HAL_ADCEx_Calibration_Start(&hadc1,ADC_CALIB_OFFSET_LINEARITY, ADC_SINGLE_ENDED); HAL_TIM_Base_Start(&htim6); HAL_ADC_Start_DMA(&hadc1, (uint32_t *)DMABuf1,DMA_BUF_SIZE); ``` 此外,有用户发现将编译器从5改为6后,编译速度有所提升。另外,用户表示觉得stm32cubeide难用,表达式里的变量不会实时更新。因此用户又转回了Keil。

相关推荐

最新推荐

recommend-type

CUBEMX-STM32F030学习笔记

HAL库是 STM32 微控制器的硬件抽象层库,提供了对微控制器的寄存器级别访问、DMA控制、定时器控制、串口控制等功能。STM32CubeMX是一款基于STM32微控制器的开发环境,提供了图形化的配置界面、代码生成器、项目管理...
recommend-type

基于Matlab的STM32软件快速开发方法

4. **设备驱动支持**:RapidSTM32包含了大量的设备驱动,可以直接在模型中使用,如GPIO、定时器、ADC、UART等,方便开发者快速集成硬件功能。 5. **调试支持**:生成的代码可以与ST的IDE(如STM32CubeIDE)无缝集成...
recommend-type

最优条件下三次B样条小波边缘检测算子研究

"这篇文档是关于B样条小波在边缘检测中的应用,特别是基于最优条件的三次B样条小波多尺度边缘检测算子的介绍。文档涉及到图像处理、计算机视觉、小波分析和优化理论等多个IT领域的知识点。" 在图像处理中,边缘检测是一项至关重要的任务,因为它能提取出图像的主要特征。Canny算子是一种经典且广泛使用的边缘检测算法,但它并未考虑最优滤波器的概念。本文档提出了一个新的方法,即基于三次B样条小波的边缘提取算子,该算子通过构建目标函数来寻找最优滤波器系数,从而实现更精确的边缘检测。 小波分析是一种强大的数学工具,它能够同时在时域和频域中分析信号,被誉为数学中的"显微镜"。B样条小波是小波家族中的一种,尤其适合于图像处理和信号分析,因为它们具有良好的局部化性质和连续性。三次B样条小波在边缘检测中表现出色,其一阶导数可以用来检测小波变换的局部极大值,这些极大值往往对应于图像的边缘。 文档中提到了Canny算子的三个最优边缘检测准则,包括低虚假响应率、高边缘检测概率以及单像素宽的边缘。作者在此基础上构建了一个目标函数,该函数考虑了这些准则,以找到一组最优的滤波器系数。这些系数与三次B样条函数构成的线性组合形成最优边缘检测算子,能够在不同尺度上有效地检测图像边缘。 实验结果表明,基于最优条件的三次B样条小波边缘检测算子在性能上优于传统的Canny算子,这意味着它可能提供更准确、更稳定的边缘检测结果,这对于计算机视觉、图像分析以及其他依赖边缘信息的领域有着显著的优势。 此外,文档还提到了小波变换的定义,包括尺度函数和小波函数的概念,以及它们如何通过伸缩和平移操作来适应不同的分析需求。稳定性条件和重构小波的概念也得到了讨论,这些都是理解小波分析基础的重要组成部分。 这篇文档深入探讨了如何利用优化理论和三次B样条小波改进边缘检测技术,对于从事图像处理、信号分析和相关研究的IT专业人士来说,是一份极具价值的学习资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

递归阶乘速成:从基础到高级的9个优化策略

![递归阶乘速成:从基础到高级的9个优化策略](https://media.geeksforgeeks.org/wp-content/uploads/20240319104901/dynamic-programming.webp) # 1. 递归阶乘算法的基本概念 在计算机科学中,递归是一种常见的编程技巧,用于解决可以分解为相似子问题的问题。阶乘函数是递归应用中的一个典型示例,它计算一个非负整数的阶乘,即该数以下所有正整数的乘积。阶乘通常用符号"!"表示,例如5的阶乘写作5! = 5 * 4 * 3 * 2 * 1。通过递归,我们可以将较大数的阶乘计算简化为更小数的阶乘计算,直到达到基本情况
recommend-type

pcl库在CMakeLists。txt配置

PCL (Point Cloud Library) 是一个用于处理点云数据的开源计算机视觉库,常用于机器人、三维重建等应用。在 CMakeLists.txt 文件中配置 PCL 需要以下步骤: 1. **添加找到包依赖**: 在 CMakeLists.txt 的顶部,你需要找到并包含 PCL 的 CMake 找包模块。例如: ```cmake find_package(PCL REQUIRED) ``` 2. **指定链接目标**: 如果你打算在你的项目中使用 PCL,你需要告诉 CMake 你需要哪些特定组件。例如,如果你需要 PointCloud 和 vi
recommend-type

深入解析:wav文件格式结构

"该文主要深入解析了wav文件格式,详细介绍了其基于RIFF标准的结构以及包含的Chunk组成。" 在多媒体领域,WAV文件格式是一种广泛使用的未压缩音频文件格式,它的基础是Resource Interchange File Format (RIFF) 标准。RIFF是一种块(Chunk)结构的数据存储格式,通过将数据分为不同的部分来组织文件内容。每个WAV文件由几个关键的Chunk组成,这些Chunk共同定义了音频数据的特性。 1. RIFFWAVE Chunk RIFFWAVE Chunk是文件的起始部分,其前四个字节标识为"RIFF",紧接着的四个字节表示整个Chunk(不包括"RIFF"和Size字段)的大小。接着是'RiffType',在这个情况下是"WAVE",表明这是一个WAV文件。这个Chunk的作用是确认文件的整体类型。 2. Format Chunk Format Chunk标识为"fmt",是WAV文件中至关重要的部分,因为它包含了音频数据的格式信息。例如,采样率、位深度、通道数等都在这个Chunk中定义。这些参数决定了音频的质量和大小。Format Chunk通常包括以下子字段: - Audio Format:2字节,表示音频编码格式,如PCM(无损)或压缩格式。 - Num Channels:2字节,表示音频的声道数,如单声道(1)或立体声(2)。 - Sample Rate:4字节,表示每秒的样本数,如44100 Hz。 - Byte Rate:4字节,每秒音频数据的字节数,等于Sample Rate乘以Bits Per Sample和Num Channels。 - Block Align:2字节,每个样本数据的字节数,等于Bits Per Sample除以8乘以Num Channels。 - Bits Per Sample:2字节,每个样本的位深度,影响声音质量和文件大小。 3. Fact Chunk(可选) Fact Chunk标识为'fact',虽然不是所有WAV文件都包含此Chunk,但它提供了额外的样本信息,如实际的样本数,对于非整数倍采样率的文件尤其有用。 4. Data Chunk Data Chunk标识为'data',是WAV文件中真正包含音频样本数据的部分。其ID后面是4字节的Size字段,表示数据区域的大小,不包括ID和Size本身。这个Chunk的内容就是连续的音频样本值,根据Format Chunk定义的格式进行编码。 所有Chunk的大小字段都是以低字节在前,高字节在后的顺序存储,这是遵循了RIFF格式的规定。理解这些Chunk的结构和内容对于处理和分析WAV文件至关重要,无论是编程处理音频数据还是进行音频文件的转换和编辑。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【递归算法揭秘】:阶乘问题的7个高效实现技巧

![【递归算法揭秘】:阶乘问题的7个高效实现技巧](https://media.geeksforgeeks.org/wp-content/uploads/20230927121458/What-is-Factorial.png) # 1. 递归算法的基本原理 递归算法是一种通过函数自身调用自身以解决问题的编程技巧。它允许问题被拆分成更小的子问题,每个子问题都与原问题具有相同的结构。这种算法通常用于解决可以自然分解为相似子问题的问题,如树或图的遍历。 在递归中,关键的概念是基本情况(base case)和递归步骤(recursive step)。基本情况定义了递归的终止条件,确保算法不会无限
recommend-type

python中如何提取多维训练集中输入特征的部分

在Python中,特别是使用PyTorch进行深度学习时,处理多维特征的输入通常涉及以下几个步骤: 1. **加载数据**[^2]: 使用`numpy.loadtxt`或`pandas.read_csv`等函数加载CSV或TXT文件,这些函数允许指定`delimiter`(分隔符),如逗号或制表符,来解析具有多个特征的列。例如: ```python import numpy as np data = np.loadtxt('data.csv', delimiter=',', usecols=[0, 1, 2]) # 假设前三列为特征 ``` 2. **预处理