def extract_features(directory, sample_count): features = np.zeros(shape=(sample_count, 4, 4, 512)) labels = np.zeros(shape=(sample_count)) generator = datagen.flow_from_directory( directory, target_size=(150, 150), batch_size=batch_size, class_mode='binary') i = 0 for inputs_batch, labels_batch in generator: features_batch = conv_base.predict(inputs_batch) features[i * batch_size : (i + 1) * batch_size] = features_batch labels[i * batch_size : (i + 1) * batch_size] = labels_batch i += 1 if i * batch_size >= sample_count: break return features, labels
时间: 2024-04-14 13:31:21 浏览: 150
这段代码是一个用于从给定目录中提取图像特征和标签的函数。它使用了一个预训练的卷积基作为特征提取器,并将提取的特征保存到一个numpy数组中。以下是对每个部分的解释:
1. 创建空的特征和标签数组:在这个函数中,首先创建了一个形状为(sample_count, 4, 4, 512)的全零特征数组和一个形状为(sample_count)的全零标签数组。这里假设特征提取器输出的特征形状是(4, 4, 512)。
2. 创建数据生成器:接下来,使用Keras的ImageDataGenerator来创建一个数据生成器。这个生成器会从给定目录中读取图像,并按照一定的批次大小(batch_size)进行处理。
3. 提取特征:使用生成器迭代地从目录中获取图像批次。对于每个批次,调用conv_base.predict方法,将图像批次作为输入,得到相应的特征批次。
4. 更新特征和标签数组:将每个特征批次和标签批次更新到之前创建的特征和标签数组中。通过逐步更新的方式,构建完整的特征和标签数据集。
5. 终止条件:当达到指定的样本数量(sample_count)时,停止迭代。
6. 返回特征和标签:最后,返回特征和标签数组作为函数的输出。
这段代码可以用于在图像分类任务中提取特征,然后使用这些特征来训练一个分类器模型。
相关问题
def get_rolling_window_multistep(forecasting_length, interval_length, window_length, features, labels): output_features = np.zeros((1, features.shape[0], window_length)) output_labels = np.zeros((1, 1, forecasting_length)) if features.shape[1] != labels.shape[1]: assert 'cant process such data' else: output_features = np.zeros((1, features.shape[0], window_length)) output_labels = np.zeros((1, 1, forecasting_length)) for index in tqdm.tqdm(range(0, features.shape[1]-interval_length-window_length-forecasting_length+1), desc='data preparing'): output_features = np.concatenate((output_features, np.expand_dims(features[:, index:index+window_length], axis=0))) output_labels = np.concatenate((output_labels, np.expand_dims(labels[:, index+interval_length+window_length: index+interval_length+window_length+forecasting_length], axis=0))) output_features = output_features[1:, :, :] output_labels = output_labels[1:, :, :] return torch.from_numpy(output_features), torch.from_numpy(output_labels)什么意思
这段代码实现了一个滚动窗口的多步时间序列预测的数据处理函数。函数接收四个参数:预测长度 forecasting_length,间隔长度 interval_length,滑动窗口长度 window_length,以及特征 features 和标签 labels。函数的输出是一个元组,其中包含了处理后的特征和标签,两者都被转换成了 PyTorch 的 Tensor 格式。
该函数的主要实现步骤是:遍历特征序列,从每个时间点开始,每隔 interval_length 个时间点,取出长度为 window_length 的滑动窗口作为输入特征,同时取出该窗口后 forecasting_length 个时间点的数据作为输出标签。这样,我们就可以将时间序列分成多个滑动窗口,每个窗口都对应一个输出标签。最终,函数返回的特征和标签分别是一个三维的 Tensor,第一维表示样本数量,第二维表示时间步数(即窗口长度),第三维表示特征或标签的维度。
class TimeWindowSequence(Sequence): def __init__(self, x, y, batch_size, window_size): self.x = x self.y = y self.batch_size = batch_size self.window_size = window_size self.window_count = int(np.ceil(x.shape[0] / window_size)) def __len__(self): return int(np.ceil(self.x.shape[0] / self.batch_size)) def __getitem__(self, idx): batch_x = np.zeros((self.batch_size, self.window_size, self.x.shape[1])) batch_y = np.zeros((self.batch_size, self.y.shape[1])) for i in range(self.batch_size): j = idx * self.batch_size + i if j >= self.window_count: break window_x = self.x[j*self.window_size:(j+1)*self.window_size, :] window_y = self.y[j*self.window_size:(j+1)*self.window_size, :] batch_x[i, :window_x.shape[0], :] = window_x batch_y[i, :] = window_y[-1, :] return batch_x, batch_y出现
这段代码中似乎缺少了一个缩进,导致 `return` 语句在 `for` 循环内部。可以尝试将 `return` 语句缩进到 `for` 循环外部,如下所示:
```
class TimeWindowSequence(Sequence):
def __init__(self, x, y, batch_size, window_size):
self.x = x
self.y = y
self.batch_size = batch_size
self.window_size = window_size
self.window_count = int(np.ceil(x.shape[0] / window_size))
def __len__(self):
return int(np.ceil(self.x.shape[0] / self.batch_size))
def __getitem__(self, idx):
batch_x = np.zeros((self.batch_size, self.window_size, self.x.shape[1]))
batch_y = np.zeros((self.batch_size, self.y.shape[1]))
for i in range(self.batch_size):
j = idx * self.batch_size + i
if j >= self.window_count:
break
window_x = self.x[j*self.window_size:(j+1)*self.window_size, :]
window_y = self.y[j*self.window_size:(j+1)*self.window_size, :]
batch_x[i, :window_x.shape[0], :] = window_x
batch_y[i, :] = window_y[-1, :]
return batch_x, batch_y
```
这样应该就可以解决这个问题了。
阅读全文