写一段控制霍尔编码器电机调速的STM32程序
时间: 2024-04-15 09:26:09 浏览: 121
当然可以!下面是一个简单的示例代码,用于控制霍尔编码器电机调速的STM32程序:
```c
#include "stm32f4xx.h"
// 定义霍尔编码器相关的引脚
#define HALL_ENCODER_A_PIN GPIO_Pin_0
#define HALL_ENCODER_B_PIN GPIO_Pin_1
// 定义PWM输出引脚
#define MOTOR_PWM_PIN GPIO_Pin_9
// 定义霍尔编码器计数器的初始值
#define HALL_ENCODER_INIT_VALUE 0
// 定义PID控制器参数
#define KP 0.5
#define KI 0.2
#define KD 0.1
// 全局变量
volatile int hall_encoder_count = HALL_ENCODER_INIT_VALUE;
volatile int motor_pwm_value = 0;
volatile int error = 0;
volatile int last_error = 0;
volatile int integral = 0;
volatile int derivative = 0;
// 初始化霍尔编码器引脚和PWM输出引脚
void GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// 设置霍尔编码器引脚为输入模式
GPIO_InitStructure.GPIO_Pin = HALL_ENCODER_A_PIN | HALL_ENCODER_B_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
// 设置PWM输出引脚为复用功能
GPIO_InitStructure.GPIO_Pin = MOTOR_PWM_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 将PWM输出引脚与定时器3的通道2关联起来
GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_TIM3);
}
// 初始化定时器3用于产生PWM信号
void TIM3_PWM_Init(void) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
TIM_TimeBaseStructure.TIM_Prescaler = 83; // 设置预分频值,得到定时器时钟频率为1MHz
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 999; // 定时器计数到999时重新计数,得到PWM周期为1ms
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_Pulse = 0; // 初始占空比为0%
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
TIM_Cmd(TIM3, ENABLE);
}
// 初始化外部中断用于检测霍尔编码器的状态变化
void EXTI_Init(void) {
EXTI_InitTypeDef EXTI_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
// 配置霍尔编码器A、B引脚为中断源
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0);
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource1);
EXTI_InitStructure.EXTI_Line = EXTI_Line0 | EXTI_Line1;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; // 上升沿和下降沿触发中断
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
// 配置中断优先级
NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x01;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = EXTI1_IRQn;
NVIC_Init(&NVIC_InitStructure);
}
// 初始化PID控制器
void PID_Init(void) {
error = 0;
last_error = 0;
integral = 0;
derivative = 0;
}
// 外部中断0的中断处理函数
void EXTI0_IRQHandler(void) {
if (EXTI_GetITStatus(EXTI_Line0) != RESET) {
// 根据霍尔编码器A、B引脚的状态变化更新计数器的值
if (GPIO_ReadInputDataBit(GPIOA, HALL_ENCODER_B_PIN) == RESET) {
hall_encoder_count++;
} else {
hall_encoder_count--;
}
EXTI_ClearITPendingBit(EXTI_Line0);
}
}
// 外部中断1的中断处理函数
void EXTI1_IRQHandler(void) {
if (EXTI_GetITStatus(EXTI_Line1) != RESET) {
// 根据霍尔编码器A、B引脚的状态变化更新计数器的值
if (GPIO_ReadInputDataBit(GPIOA, HALL_ENCODER_A_PIN) == RESET) {
hall_encoder_count--;
} else {
hall_encoder_count++;
}
EXTI_ClearITPendingBit(EXTI_Line1);
}
}
// 更新电机PWM输出值
void UpdateMotorPWM(void) {
// 使用PID控制器计算新的PWM输出值
error = hall_encoder_count - HALL_ENCODER_INIT_VALUE;
integral += error;
derivative = error - last_error;
motor_pwm_value = KP * error + KI * integral + KD * derivative;
// 限制PWM输出值的范围在-100到100之间
if (motor_pwm_value > 100) {
motor_pwm_value = 100;
} else if (motor_pwm_value < -100) {
motor_pwm_value = -100;
}
// 更新PWM输出占空比
TIM3->CCR2 = (motor_pwm_value + 100) * 10; // 占空比范围从0%到100%
last_error = error;
}
int main(void) {
// 初始化GPIO引脚
GPIO_Init();
// 初始化定时器3用于产生PWM信号
TIM3_PWM_Init();
// 初始化外部中断用于检测霍尔编码器的状态变化
EXTI_Init();
// 初始化PID控制器
PID_Init();
while (1) {
// 更新电机PWM输出值
UpdateMotorPWM();
}
}
```
以上是一个简单的示例代码,用于控制霍尔编码器电机调速的STM32程序。该程序使用PID控制器对霍尔编码器计数器的值进行反馈控制,通过调整PWM输出的占空比来控制电机的转速。你可以根据实际需求修改PID控制器的参数和PWM输出的范围。同时,注意根据你的硬件连接情况修改引脚定义和初始化函数中的相关配置。
阅读全文