使用pytorch实现shufflenetv2做自动识别的智能电子秤的方法及代码

时间: 2023-06-25 21:01:52 浏览: 107
ShuffleNetV2是一种轻量级的神经网络结构,适用于移动设备和嵌入式设备上的计算,较小的模型尺寸可以减少计算资源和存储空间的使用。在智能电子秤中使用ShuffleNetV2可以实现重量的自动识别,具有较高的精度和速度。 以下是使用PyTorch实现ShuffleNetV2的代码示例,其中包含训练和推理过程: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data import DataLoader # 定义ShuffleNetV2网络结构 class ShuffleNetV2(nn.Module): def __init__(self, num_classes=10): super(ShuffleNetV2, self).__init__() self.stage1 = nn.Sequential( nn.Conv2d(1, 24, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(24), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.stage2 = nn.Sequential( ShuffleUnit(24, 116), ShuffleUnit(116, 116), ShuffleUnit(116, 116) ) self.stage3 = nn.Sequential( ShuffleUnit(116, 232), ShuffleUnit(232, 232), ShuffleUnit(232, 232), ShuffleUnit(232, 232), ShuffleUnit(232, 232) ) self.stage4 = nn.Sequential( ShuffleUnit(232, 464), ShuffleUnit(464, 464), ShuffleUnit(464, 464) ) self.conv5 = nn.Sequential( nn.Conv2d(464, 1024, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(1024), nn.ReLU(inplace=True) ) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.stage1(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = nn.AdaptiveAvgPool2d(1)(x) x = x.view(x.size(0), -1) x = self.fc(x) return x # 定义ShuffleNetV2的基本单元 class ShuffleUnit(nn.Module): def __init__(self, in_channels, out_channels): super(ShuffleUnit, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = 2 if self.in_channels != self.out_channels else 1 self.bottleneck_channels = self.out_channels // 4 self.residual = nn.Sequential( nn.Conv2d(self.in_channels, self.bottleneck_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(self.bottleneck_channels), nn.ReLU(inplace=True), nn.Conv2d(self.bottleneck_channels, self.bottleneck_channels, kernel_size=3, stride=self.stride, padding=1, groups=self.bottleneck_channels), nn.BatchNorm2d(self.bottleneck_channels), nn.Conv2d(self.bottleneck_channels, self.out_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(self.out_channels) ) self.shortcut = nn.Sequential() if self.stride == 2: self.shortcut = nn.Sequential( nn.Conv2d(self.in_channels, self.in_channels, kernel_size=3, stride=2, padding=1, groups=self.in_channels), nn.BatchNorm2d(self.in_channels), nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(self.out_channels) ) def forward(self, x): residual = self.residual(x) shortcut = self.shortcut(x) out = nn.ReLU(inplace=True)(residual + shortcut) out = channel_shuffle(out, 2) return out # 定义通道混洗操作 def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() x = x.view(batchsize, -1, height, width) return x # 定义训练函数 def train(model, device, train_loader, optimizer, criterion, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 定义测试函数 def test(model, device, test_loader, criterion): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 定义主函数 def main(): # 设置超参数 batch_size = 64 epochs = 50 lr = 0.01 momentum = 0.9 weight_decay = 1e-4 # 定义数据预处理函数 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义模型、优化器和损失函数 model = ShuffleNetV2().to(device) optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(1, epochs + 1): train(model, device, train_loader, optimizer, criterion, epoch) test(model, device, test_loader, criterion) # 保存模型 torch.save(model.state_dict(), "shufflenetv2.pth") if __name__ == '__main__': main() ``` 以上代码实现了使用ShuffleNetV2网络结构在MNIST数据集上进行训练和测试,其中包括数据预处理、模型定义、优化器和损失函数的设置,以及训练和测试函数的定义。可以根据实际需求对代码进行修改和调整。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

在本示例中,我们将讨论如何使用Pytorch实现手写数字的识别,特别是针对MNIST数据集。MNIST数据集包含了60000个训练样本和10000个测试样本,每个样本都是28x28像素的手写数字图像。 首先,我们需要导入必要的库,...
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

在本实例中,我们将探讨如何使用PyTorch构建一个基于LSTM(长短期记忆网络)的手写数字识别模型,以解决MNIST数据集的问题。MNIST数据集包含大量的手写数字图像,通常用于训练和测试计算机视觉算法,尤其是深度学习...
recommend-type

使用pytorch实现论文中的unet网络

在PyTorch中实现Unet网络是深度学习领域中用于图像分割任务的常见做法。Unet网络由Ronneberger等人提出,它以其独特的编解码结构而闻名,能够有效地捕捉图像的上下文信息并保留边缘细节。以下是关于如何在PyTorch中...
recommend-type

使用pytorch实现可视化中间层的结果

6. **可视化代码**:文章中提到了一个名为`FeatureVisualization`的类,它包含了初始化方法(接收图像路径和选择的层)和可能的其他方法来执行上述步骤。 通过这种方式,我们可以看到图像在通过网络时,特征是如何...
recommend-type

pytorch三层全连接层实现手写字母识别方式

在本教程中,我们将探讨如何使用PyTorch构建一个三层全连接神经网络来实现手写字母的识别。PyTorch是一个流行的深度学习框架,它提供了灵活性和效率,非常适合进行这样的任务。 首先,我们需要定义网络结构。`...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。