使用pytorch实现shufflenetv2做自动识别的智能电子秤的方法及代码
时间: 2023-06-25 21:01:52 浏览: 109
ShuffleNetV2是一种轻量级的神经网络结构,适用于移动设备和嵌入式设备上的计算,较小的模型尺寸可以减少计算资源和存储空间的使用。在智能电子秤中使用ShuffleNetV2可以实现重量的自动识别,具有较高的精度和速度。
以下是使用PyTorch实现ShuffleNetV2的代码示例,其中包含训练和推理过程:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
# 定义ShuffleNetV2网络结构
class ShuffleNetV2(nn.Module):
def __init__(self, num_classes=10):
super(ShuffleNetV2, self).__init__()
self.stage1 = nn.Sequential(
nn.Conv2d(1, 24, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(24),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.stage2 = nn.Sequential(
ShuffleUnit(24, 116),
ShuffleUnit(116, 116),
ShuffleUnit(116, 116)
)
self.stage3 = nn.Sequential(
ShuffleUnit(116, 232),
ShuffleUnit(232, 232),
ShuffleUnit(232, 232),
ShuffleUnit(232, 232),
ShuffleUnit(232, 232)
)
self.stage4 = nn.Sequential(
ShuffleUnit(232, 464),
ShuffleUnit(464, 464),
ShuffleUnit(464, 464)
)
self.conv5 = nn.Sequential(
nn.Conv2d(464, 1024, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True)
)
self.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
x = nn.AdaptiveAvgPool2d(1)(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 定义ShuffleNetV2的基本单元
class ShuffleUnit(nn.Module):
def __init__(self, in_channels, out_channels):
super(ShuffleUnit, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = 2 if self.in_channels != self.out_channels else 1
self.bottleneck_channels = self.out_channels // 4
self.residual = nn.Sequential(
nn.Conv2d(self.in_channels, self.bottleneck_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.bottleneck_channels),
nn.ReLU(inplace=True),
nn.Conv2d(self.bottleneck_channels, self.bottleneck_channels, kernel_size=3, stride=self.stride, padding=1, groups=self.bottleneck_channels),
nn.BatchNorm2d(self.bottleneck_channels),
nn.Conv2d(self.bottleneck_channels, self.out_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.out_channels)
)
self.shortcut = nn.Sequential()
if self.stride == 2:
self.shortcut = nn.Sequential(
nn.Conv2d(self.in_channels, self.in_channels, kernel_size=3, stride=2, padding=1, groups=self.in_channels),
nn.BatchNorm2d(self.in_channels),
nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.out_channels)
)
def forward(self, x):
residual = self.residual(x)
shortcut = self.shortcut(x)
out = nn.ReLU(inplace=True)(residual + shortcut)
out = channel_shuffle(out, 2)
return out
# 定义通道混洗操作
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
x = x.view(batchsize, -1, height, width)
return x
# 定义训练函数
def train(model, device, train_loader, optimizer, criterion, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 定义测试函数
def test(model, device, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 定义主函数
def main():
# 设置超参数
batch_size = 64
epochs = 50
lr = 0.01
momentum = 0.9
weight_decay = 1e-4
# 定义数据预处理函数
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义模型、优化器和损失函数
model = ShuffleNetV2().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, criterion, epoch)
test(model, device, test_loader, criterion)
# 保存模型
torch.save(model.state_dict(), "shufflenetv2.pth")
if __name__ == '__main__':
main()
```
以上代码实现了使用ShuffleNetV2网络结构在MNIST数据集上进行训练和测试,其中包括数据预处理、模型定义、优化器和损失函数的设置,以及训练和测试函数的定义。可以根据实际需求对代码进行修改和调整。
阅读全文