请写出基于Pytorch框架的deeplabv3+网络加入注意力机制的方法与代码,要求代码可以成功分割图像
时间: 2024-05-05 12:21:18 浏览: 163
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
```
接下来,我们定义一个带有注意力机制的 deeplabv3+ 模型:
```python
class AtrousSpatialPyramidPoolingModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AtrousSpatialPyramidPoolingModule, self).__init__()
self.conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv3x3_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, dilation=1)
self.conv3x3_2 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=2, dilation=2)
self.conv3x3_3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=4, dilation=4)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1x1_out = nn.Conv2d(out_channels*5, out_channels, kernel_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x1 = self.conv1x1(x)
x2 = self.conv3x3_1(x)
x3 = self.conv3x3_2(x)
x4 = self.conv3x3_3(x)
x5 = self.avg_pool(x)
x5 = F.interpolate(x5, size=x.size()[2:], mode="bilinear", align_corners=True)
x = torch.cat([x1, x2, x3, x4, x5], dim=1)
x = self.conv1x1_out(x)
x = self.sigmoid(x)
x = x * x1
return x
class DeepLabv3Plus(nn.Module):
def __init__(self, num_classes):
super(DeepLabv3Plus, self).__init__()
self.backbone = ResNet101(output_stride=8)
self.aspp = AtrousSpatialPyramidPoolingModule(2048, 256)
self.decoder = Decoder(256, 256, num_classes)
def forward(self, x):
low_level_features, x = self.backbone(x)
x = self.aspp(x)
x = self.decoder(x, low_level_features)
x = F.interpolate(x, size=x0.size()[2:], mode="bilinear", align_corners=True)
return x
```
注意力机制的实现在 `AtrousSpatialPyramidPoolingModule` 中。这个模块包含了多个不同大小的卷积核的卷积操作,以及一个全局平均池化操作。接着,将这些卷积的输出以及全局池化的输出拼接在一起,通过一个 $1 \times 1$ 的卷积层进行降维,之后通过 Sigmoid 函数进行归一化。最后,将注意力机制的输出与原来的输入相乘即可。
在模型训练的时候,我们可以使用交叉熵损失函数和 Adam 优化器:
```python
model = DeepLabv3Plus(num_classes=21)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}".format(epoch+1, num_epochs, i+1, total_step, loss.item()))
```
在模型训练完成后,我们可以进行图像分割:
```python
model.eval()
image = Image.open("image.jpg")
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(image)
output = F.softmax(output, dim=1)
output = torch.argmax(output, dim=1)
output = output.squeeze(0).cpu().numpy()
plt.imshow(output)
plt.show()
```
这里我们使用了 softmax 函数和 argmax 函数对输出进行了处理,得到了每个像素点的类别。最后,我们可以将输出的图片显示出来,得到图像分割的结果。
阅读全文