神经网络中的wight
时间: 2023-11-05 20:18:07 浏览: 155
在神经网络中,wight代表从一个神经元出发的直线的权值。每个神经元都有一个对应的wight,它决定了该神经元对输入的敏感程度。具体来说,wight是连接两个神经元之间的连接强度,它可以是正数也可以是负数,表示正向或反向的影响。通过调整wight的数值,神经网络可以学习到不同的模式和特征。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [数学建模神经网络模型,数学建模神经网络算法](https://blog.csdn.net/super67269/article/details/126443990)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*3*3, hidden_size]) wight_init_scales = np.sqrt(2.0 / pre_node_nums) # 使用ReLU的情况下推荐的初始值 self.params = {} pre_channel_num = input_dim[0] for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]): self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size']) self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num']) pre_channel_num = conv_param['filter_num'] self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size) self.params['b7'] = np.zeros(hidden_size) self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size) self.params['b8'] = np.zeros(output_size)
这段代码是一个卷积神经网络(Convolutional Neural Network, CNN)的初始化参数部分。具体来说,它定义了一个包含八层的CNN,其中前六层是卷积层,第七层是全连接层,第八层是输出层。每一层都有对应的权重矩阵和偏置向量,这些参数是通过使用高斯分布随机初始化得到的。其中,参数pre_node_nums定义了每一层的输入节点数目,wight_init_scales是权重矩阵的初始化缩放因子,input_dim是输入数据的维度,conv_param_1到conv_param_6是对应的卷积层的参数,hidden_size是全连接层的输出节点数目,output_size是输出层的节点数目。这段代码的作用是初始化CNN的参数,为后续的模型训练做准备。
self.params = {} pre_channel_num = input_dim[0] for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]): self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size']) self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num']) pre_channel_num = conv_param['filter_num'] self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size) self.params['b7'] = np.zeros(hidden_size) self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size) self.params['b8'] = np.zeros(output_size)
这段代码是在构建卷积神经网络模型时初始化模型的参数。其中 self.params 是一个字典,用于存储模型的参数,包括卷积层的权重和偏置,以及全连接层的权重和偏置。具体来说,这段代码中,先根据输入数据的形状 input_dim 和卷积层的参数 conv_param 初始化第一个卷积层的权重和偏置,然后根据第一个卷积层的输出通道数初始化第二个卷积层的权重和偏置,以此类推,直到初始化所有的卷积层的权重和偏置。最后,初始化全连接层的权重和偏置,其中 W7 表示连接第 7 层和第 8 层的权重,W8 表示连接第 8 层和输出层的权重。这段代码中使用了高斯分布来初始化权重参数,其中 wight_init_scales 是一个包含 8 个元素的列表,用于指定每一层的权重参数的初始化标准差。
阅读全文