使用numpy提供的功能,对所给的students.csv文件进行操作: (1)对所有人的Score,MonthFee进行统计,找出最大值,最小值,平均值,方差。(2)分性别,完成的要求。
时间: 2024-09-12 10:07:27 浏览: 48
首先,为了完成这个任务,我们需要使用`pandas`库而不是`numpy`,因为`pandas`更适合处理表格数据,包括读取CSV文件并执行各种统计数据计算。下面是两个步骤来实现你的需求:
1. **读取CSV文件并计算Score和MonthFee的统计数据**
```python
import pandas as pd
# 读取csv文件
df_students = pd.read_csv('students.csv', header=header)
# 计算Score列的统计数据
score_stats = df_students['M1 Score'].describe()
min_score, max_score, avg_score, var_score = score_stats['min'], score_stats['max'], score_stats['mean'], score_stats['var']
# 如果有MonthFee列,也需要计算其统计数据,这里假设它叫'month_fee'
if 'MonthFee' in df_students.columns:
month_fee_stats = df_students['MonthFee'].describe()
min_month_fee, max_month_fee, avg_month_fee, var_month_fee = month_fee_stats['min'], month_fee_stats['max'], month_fee_stats['mean'], month_fee_stats['var']
else:
max_month_fee = None
min_month_fee = None
avg_month_fee = None
var_month_fee = None
print(f"Score statistics:")
print(f"Min: {min_score}, Max: {max_score}, Average: {avg_score}, Variance: {var_score}")
if 'MonthFee' in df_students.columns:
print("\nMonthFee statistics:")
print(f"Min: {min_month_fee}, Max: {max_month_fee}, Average: {avg_month_fee}, Variance: {var_month_fee}")
```
2. **按性别分组并计算分数统计**
```python
group_stats = df_students.groupby('Name')['M1 Score'].agg(['min', 'max', 'mean', 'std']) # 注意这里的'std'代表标准差而非方差
print("\nScore statistics by gender (assuming 'Name' contains the gender information):")
print(group_stats)
```
请注意,上述代码假定CSV文件的结构与你给出的示例一致,即有一个名为'M1 Score'的分数列。如果实际文件结构不同,可能需要调整代码以适应实际情况。
阅读全文