import pcl import numpy as np from mayavi import mlab cloud = pcl.load('laser.pcd') vox = cloud.make_voxel_grid_filter() vox.set_leaf_size(0.1, 0.1, 0.1) cloud_downsampled = vox.filter() seg = cloud_downsampled.make_segmenter() seg.set_model_type(pcl.SACMODEL_PLANE) seg.set_method_type(pcl.SAC_RANSAC) seg.set_distance_threshold(0.01) indices, model = seg.segment() obstacles_cloud = cloud_downsampled.extract(indices, negative=True) mlab.figure(bgcolor=(0.1, 0.1, 0.1)) mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05) mlab.points3d(obstacles_cloud[:, 0], obstacles_cloud[:, 1], obstacles_cloud[:, 2], mode='point', color=(1, 0, 0), scale_factor=0.05) mlab.show() 发生错误:Traceback (most recent call last): File "D:\pythonProject3\障碍物识别2.py", line 26, in <module> mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05) File "pcl\pxi/PointCloud_PointXYZ_180.pxi", line 233, in pcl._pcl.PointCloud.getitem TypeError: an integer is required
时间: 2023-06-17 16:06:23 浏览: 158
这个错误可能是由于 `cloud_downsampled` 为空导致的。你可以在运行 `seg.segment()` 之后添加以下代码来检查 `indices` 是否为空:
```python
if not indices:
print("No plane found")
```
如果 `indices` 为空,那么你需要检查点云数据是否正确加载。如果 `indices` 不为空,但是 `cloud_downsampled` 为空,那么你需要检查障碍物点云数据是否正确提取。
相关问题
import pcl import numpy as np from mayavi import mlab cloud = pcl.load('laser.pcd') vox = cloud.make_voxel_grid_filter() vox.set_leaf_size(0.01, 0.01, 0.01) cloud_downsampled = vox.filter() seg = cloud_downsampled.make_segmenter() seg.set_model_type(pcl.SACMODEL_PLANE) seg.set_method_type(pcl.SAC_RANSAC) seg.set_distance_threshold(0.01) indices, model = seg.segment() obstacles_cloud = cloud_downsampled.extract(indices, negative=True) mlab.figure(bgcolor=(0.1, 0.1, 0.1)) mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05) mlab.points3d(obstacles_cloud[:, 0], obstacles_cloud[:, 1], obstacles_cloud[:, 2], mode='point', color=(1, 0, 0), scale_factor=0.05) mlab.show() 发生如下错误:[pcl::VoxelGrid::applyFilter] Leaf size is too small for the input dataset. Integer indices would overflow.Traceback (most recent call last): File "D:\pythonProject3\障碍物识别2.py", line 25, in <module> mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05) File "pcl\pxi/PointCloud_PointXYZ_180.pxi", line 233, in pcl._pcl.PointCloud.__getitem__ TypeError: an integer is required
这个错误是因为你的点云经过体素滤波后点云数量变少,使用下标索引访问时可能会出现索引越界的问题。可以在代码中加入如下判断来解决这个问题:
```python
if cloud_downsampled.size > 0:
mlab.points3d(cloud_downsampled[:, 0], cloud_downsampled[:, 1], cloud_downsampled[:, 2], mode='point', color=(1, 1, 1), scale_factor=0.05)
if obstacles_cloud.size > 0:
mlab.points3d(obstacles_cloud[:, 0], obstacles_cloud[:, 1], obstacles_cloud[:, 2], mode='point', color=(1, 0, 0), scale_factor=0.05)
```
这段代码会先判断点云是否为空,如果不为空再进行可视化。这样可以避免索引越界的问题。同时也建议在代码中加入一些打印语句来输出点云的数量和其他信息,方便调试。
pcl库中没有pcl_cloud.from_array(point_cloud)这个函数
非常抱歉给你带来了困扰。在PCL库中确实没有`pcl_cloud.from_array(point_cloud)`这个函数。
下面是一个使用PCL库创建点云对象并保存为.ply文件的示例代码:
```python
import pcl
# 创建一个点云对象
pcl_cloud = pcl.PointCloud()
pcl_cloud.from_list([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# 保存为.ply文件
pcl.save(pcl_cloud, "point_cloud.ply")
```
在这个示例中,我们直接使用`pcl.PointCloud()`创建了一个空的PCL点云对象`pcl_cloud`。然后,通过调用`from_list()`函数,将点的坐标作为列表传递给点云对象。
最后,使用`pcl.save()`函数将点云对象保存为.ply文件。
请确保你已经在环境中安装了PCL库,并在Python代码中正确导入了`pcl`模块。
非常抱歉之前给你带来的困惑,希望这次能够帮助到你!
阅读全文