在PyCharm中不使用torchvision完成cifar10的卷积神经网络代码

时间: 2024-02-24 10:55:51 浏览: 28
好的,让我来回答你的问题。 首先,我们需要导入必要的库,包括PyTorch、NumPy等: ``` python import torch import torch.nn as nn import torch.optim as optim import numpy as np ``` 接着,我们需要定义一个卷积神经网络。在这个例子中,我们定义一个包含两个卷积层和两个全连接层的神经网络。代码如下: ``` python class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x ``` 接下来,我们需要定义一些超参数,包括学习率、损失函数、优化器等: ``` python lr = 0.001 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9) ``` 然后,我们需要加载CIFAR-10数据集并进行预处理: ``` python from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ``` 但是由于你不想使用torchvision,我们需要手动加载数据集并进行预处理: ``` python import pickle def load_batch(filename): with open(filename, 'rb') as f: data = pickle.load(f, encoding='bytes') images = data[b'data'] labels = data[b'labels'] images = images.reshape((len(images), 3, 32, 32)) images = images.transpose((0, 2, 3, 1)) labels = np.array(labels) return images, labels def load_data(): train_images = [] train_labels = [] for i in range(1, 6): filename = f'./data_batch_{i}' images, labels = load_batch(filename) train_images.append(images) train_labels.append(labels) train_images = np.concatenate(train_images, axis=0) train_labels = np.concatenate(train_labels, axis=0) test_images, test_labels = load_batch('./test_batch') return train_images, train_labels, test_images, test_labels train_images, train_labels, test_images, test_labels = load_data() train_images = train_images / 255.0 test_images = test_images / 255.0 train_images = torch.from_numpy(train_images).float() train_labels = torch.from_numpy(train_labels).long() test_images = torch.from_numpy(test_images).float() test_labels = torch.from_numpy(test_labels).long() trainset = torch.utils.data.TensorDataset(train_images, train_labels) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torch.utils.data.TensorDataset(test_images, test_labels) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ``` 最后,我们可以开始训练模型了: ``` python for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ``` 在训练完成后,我们可以对模型进行测试并输出准确率: ``` python correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 这就是一个不使用torchvision完成cifar10的卷积神经网络的代码。希望能对你有所帮助!

相关推荐

最新推荐

recommend-type

基于卷积神经网络VGG16模型花卉分类与手势识别.docx

本文是利用卷积神经网络VGG16模型对花卉和手势进行分类识别,利用卷积神经网络的卷积层进行特征提取,连接层起到分类器的作用,对图像进行分类。所用软件是pycharm,解释器是python3.6。
recommend-type

Python在终端通过pip安装好包以后在Pycharm中依然无法使用的问题(三种解决方案)

主要介绍了Python在终端通过pip安装好包以后在Pycharm中依然无法使用的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

基于jupyter代码无法在pycharm中运行的解决方法

主要介绍了基于jupyter代码无法在pycharm中运行的解决方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

在PyCharm下使用 ipython 交互式编程的方法

今天小编就为大家分享一篇在PyCharm下使用 ipython 交互式编程的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

解决Matplotlib图表不能在Pycharm中显示的问题

今天小编就为大家分享一篇解决Matplotlib图表不能在Pycharm中显示的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。