matlab悬臂梁有限元分析
时间: 2023-11-19 19:57:47 浏览: 232
以下是使用MATLAB进行悬臂梁有限元分析的步骤:
1. 定义材料特性和悬臂梁的几何形状:
```matlab
E = 2e5; % 杨氏模量
v = 0.3; % 泊松比
L = 100; % 悬臂梁长度
b = 10; % 悬臂梁宽度
h = 15; % 悬臂梁高度
I = (b*h^3)/12; % 惯性矩
```
2. 定义节点和单元:
```matlab
nNodes = 2; % 节点数
nElements = 1; % 单元数
nodeCoords = [0 0; L 0]; % 节点坐标
elementNodes = [1 2]; % 单元节点
```
3. 定义边界条件:
```matlab
% 左端固定支座
prescribedDofs = 1;
prescribedDofsValues = [0 0];
```
4. 定义荷载:
```matlab
% 在悬臂梁末端施加一个向下的点载荷
pointLoadNode = 2;pointLoadDOF = 2;
pointLoad = -500;
```
5. 组装刚度矩阵和载荷向量:
```matlab
% 计算单元刚度矩阵
k = (E*I/L^3)*[12 6*L -12 6*L; 6*L 4*L^2 -6*L 2*L^2; -12 -6*L 12 -6*L; 6*L 2*L^2 -6*L 4*L^2];
% 组装刚度矩阵和载荷向量
K = zeros(nNodes);
F = zeros(nNodes, 1);
for e = 1:nElements
elementDofs = elementNodes(e,:);
K(elementDofs, elementDofs) = K(elementDofs, elementDofs) + k;
F(elementDofs) = F(elementDofs) + [0; pointLoad];
end
% 处理边界条件
K(prescribedDofs,:) = 0;
K(:,prescribedDofs) = 0;
K(prescribedDofs,prescribedDofs) = eye(length(prescribedDofs));
F(prescribedDofs) = prescribedDofsValues';
```
6. 求解位移和反应力:
```matlab
% 求解位移和反力
U = K\F;
reactionForces = K*U;
```
7. 计算节点处的应力和应变:
```matlab
% 计算节点处的应力和应变
stress = zeros(nElements, 2);
strain = zeros(nElements, 2);
for e = 1:nElements
elementDofs = elementNodes(e,:);
elementCoords = nodeCoords(elementDofs,:);
Le = norm(elementCoords(2,:) - elementCoords(1,:));
B = (1/Le)*[-1 1];
N = 0.5*[-1 1];
u_e = U(elementDofs);
strain(e,:) = B*u_e';
stress(e,:) = E*strain(e,:);
end
```
8. 计算最大位移和最大应力:
```matlab
% 计算最大位移和最大应力
MaximumDisplacement = max(abs(U));
MaximumStress = max(abs(stress));
```
9. 输出结果:
```matlab
% 输出结果
disp(['Maximum displacement: ', num2str(MaximumDisplacement)]);
disp(['Maximum stress: ', num2str(MaximumStress)]);
```
阅读全文