RNN pytorch代码
时间: 2023-09-16 13:14:45 浏览: 113
Pytorch-基于RNN的不同语种人名生成模型
下面是一个使用PyTorch定义RNN的示例代码:
```python
import torch
import torch.nn as nn
# 定义RNN类
class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(RNN, self).__init__()
self.hidden_dim = hidden_dim
self.n_layers = n_layers
# 创建RNN层
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
# 最后的全连接层
self.fc = nn.Linear(hidden_dim, output_size)
def forward(self, x):
batch_size = x.size(0)
# 初始化隐藏状态
hidden = self.init_hidden(batch_size)
# 前向传播
out, hidden = self.rnn(x, hidden)
# 提取最后一个时间步的输出
out = out[:, -1, :]
# 通过全连接层得到最终输出
out = self.fc(out)
return out
def init_hidden(self, batch_size):
# 初始化隐藏状态
hidden = torch.zeros(self.n_layers, batch_size, self.hidden_dim)
return hidden
# 创建RNN实例
input_size = 1
output_size = 1
hidden_dim = 32
n_layers = 1
rnn = RNN(input_size, output_size, hidden_dim, n_layers)
# 打印RNN的结构
print(rnn)
```
这段代码首先定义了一个自定义的RNN类,继承自`nn.Module`。在类的`__init__`方法中,定义了RNN的结构,包括输入大小、隐藏状态的特征数、RNN的层数等。然后在`forward`方法中,进行了前向传播计算。最后,在`init_hidden`方法中,初始化了隐藏状态。
你可以根据自己的需求修改这段代码中的超参数,比如`input_size`、`output_size`、`hidden_dim`和`n_layers`等。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [【Pytorch】21. RNN代码分析](https://blog.csdn.net/qq_35272180/article/details/115765269)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [pytorch自定义RNN结构(附代码)](https://blog.csdn.net/kuan__/article/details/114652053)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文