PSO-LSSVR代码实现
时间: 2023-10-28 07:07:19 浏览: 167
PSO-LS-SVM代码
PSO-LSSVR是一种基于粒子群优化算法(PSO)和最小二乘支持向量回归(LSSVR)的机器学习算法,用于回归问题。下面是Python实现PSO-LSSVR的代码:
```
import numpy as np
from sklearn.metrics.pairwise import rbf_kernel
class PSO_LSSVR:
def __init__(self, c1=2, c2=2, w=0.8, max_iter=100, pop_size=50, gamma=0.1, sigma=0.1):
self.c1 = c1
self.c2 = c2
self.w = w
self.max_iter = max_iter
self.pop_size = pop_size
self.gamma = gamma
self.sigma = sigma
def fit(self, X, y):
self.X = X
self.y = y
self.n_samples, self.n_features = X.shape
self.K = rbf_kernel(X, gamma=self.gamma)
self.alpha = np.zeros(self.n_samples)
self.b = 0
self.pbest_alpha = np.zeros((self.pop_size, self.n_samples))
self.pbest_b = np.zeros(self.pop_size)
self.pbest_loss = np.ones(self.pop_size) * np.inf
self.gbest_alpha = np.zeros(self.n_samples)
self.gbest_b = 0
self.gbest_loss = np.inf
self.population_alpha = np.random.rand(self.pop_size, self.n_samples)
self.population_b = np.random.rand(self.pop_size)
self.velocity_alpha = np.zeros((self.pop_size, self.n_samples))
self.velocity_b = np.zeros(self.pop_size)
for i in range(self.max_iter):
for j in range(self.pop_size):
loss = self.loss(self.population_alpha[j], self.population_b[j])
if loss < self.pbest_loss[j]:
self.pbest_alpha[j] = self.population_alpha[j]
self.pbest_b[j] = self.population_b[j]
self.pbest_loss[j] = loss
if loss < self.gbest_loss:
self.gbest_alpha = self.population_alpha[j]
self.gbest_b = self.population_b[j]
self.gbest_loss = loss
for j in range(self.pop_size):
self.velocity_alpha[j] = self.w * self.velocity_alpha[j] + \
self.c1 * np.random.rand() * (self.pbest_alpha[j] - self.population_alpha[j]) + \
self.c2 * np.random.rand() * (self.gbest_alpha - self.population_alpha[j])
self.velocity_b[j] = self.w * self.velocity_b[j] + \
self.c1 * np.random.rand() * (self.pbest_b[j] - self.population_b[j]) + \
self.c2 * np.random.rand() * (self.gbest_b - self.population_b[j])
self.population_alpha[j] += self.velocity_alpha[j]
self.population_b[j] += self.velocity_b[j]
self.alpha = self.gbest_alpha
self.b = self.gbest_b
def predict(self, X):
K = rbf_kernel(X, self.X, gamma=self.gamma)
return np.dot(K, self.alpha) + self.b
def loss(self, alpha, b):
y_pred = np.dot(self.K, alpha) + b
return np.mean((self.y - y_pred) ** 2) + self.sigma * np.sum(alpha ** 2)
```
阅读全文