装配线平衡优化使用模拟退火改进遗传算法,写出完整代码
时间: 2024-09-25 14:07:14 浏览: 71
装配线平衡优化结合模拟退火(Simulated Annealing)和遗传算法(Genetic Algorithm),可以提供更全局且鲁棒的解决方案。这是一个简化版本的Python示例,使用了`deap`库(一种用于并行遗传算法的Python框架)和自定义的模拟退火模块。注意这只是一个基础示例,并未涵盖所有细节,例如初始化种群、适应度评估、交叉和变异等。
首先,安装必要的库:
```bash
pip install deap numpy
```
然后编写代码:
```python
import random
import numpy as np
from deap import base, creator, tools, algorithms
from simulated_annealing import SimulatedAnnealing
# 定义基因编码
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
def evaluate_fitness(individual):
# 假设任务完成时间构成个体的适应度值
completion_times = [individual[i] for i in range(len(tasks))]
total_wait_time = sum(completion_times)
return (-total_wait_time,)
def create_initial_population(n):
return [Individual(random.sample(range(stations), stations)) for _ in range(n)]
# 模拟退火参数
anneal_params = {
"T": 1000,
"cooling_rate": 0.95,
"acceptance_probability": 0.8,
}
def main():
n_individuals = 50
population = create_initial_population(n_individuals)
toolbox = base.Toolbox()
toolbox.register("evaluate", evaluate_fitness)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05)
toolbox.register("select", tools.selNSGA2)
pop, logbook = algorithms.eaSimple(population, toolbox, cxpb=0.8, mutpb=0.2,ngen=100, verbose=True)
# 结合模拟退火进行迭代优化
best_solution = pop[0]
for _ in range(100): # 可以调整迭代次数
improved_solution = SimulatedAnnealing(evaluate_fitness, **anneal_params).run(best_solution)
if improve_solution > best_solution.fitness.values:
best_solution = improved_solution
print("最优解决方案:", best_solution)
print("最小总等待时间:", -best_solution.fitness.values[0])
if __name__ == "__main__":
main()
阅读全文