openpose和yolo结合
时间: 2023-10-11 08:11:46 浏览: 176
OpenPose和YOLO的结合是指将OpenPose的人体姿态估计和YOLO的目标检测两个模型进行融合。这种结合可以实现同时检测人体姿态和目标物体的功能。在这个结合中,首先需要将两个模型进行串联,以便在同一张图像上进行处理。在GPU下,这个结合模型可以达到30FPS以上的速度。接下来的工作是对模型进行压缩加速和精度优化。可以对OpenPose的轻量骨干进行进一步压缩,或者选择其他更轻量的人体姿态估计网络。目标检测部分也可以进行类似的优化。需要考虑的问题包括模型的性能、精度和速度等方面。\[1\] \[2\] \[3\]
#### 引用[.reference_title]
- *1* [基于openpose和目标检测手势识别方案的设计](https://blog.csdn.net/qq_39056987/article/details/115163340)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [基于YOLOV7的openpose人体姿态检测识别,FPS可以达到“较高”的效果](https://blog.csdn.net/qq_44936246/article/details/126376253)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文