plt.plot(range(len(history['train_loss'])), history['train_loss'], label="train loss") plt.show()
时间: 2023-09-19 19:05:19 浏览: 112
### 回答1:
这段代码使用了Python中的Matplotlib库,用于绘制训练损失值的变化曲线图。具体来说,plt.plot()函数会将给定的x和y坐标值绘制成一条折线,其中x坐标值为range(len(history['train_loss'])),即0到训练轮数的长度,y坐标值为history['train_loss'],即每轮训练时的损失值。label参数为标签,用于在图例中显示该折线的名称。最后调用plt.show()函数显示绘制出来的图形。
### 回答2:
这段代码是使用matplotlib库中的plt.plot函数对训练损失进行绘图,并且使用plt.show函数显示出图像。
plt.plot(range(len(history['train_loss'])), history['train_loss'], label="train loss")表示使用train_loss作为y轴数据,使用range(len(history['train_loss']))作为x轴数据,并且设置图例的标签为"train loss"。
plt.show()用于将之前绘制的图像显示出来。
整段代码的作用就是将训练集的损失值进行可视化展示,以便观察损失函数随训练次数的变化趋势,从而评估模型的训练效果。
相关问题
tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(data['text']) sequences = tokenizer.texts_to_sequences(data['text']) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences,maxlen=maxlen) labels = np.array(data[:,:1]) print('Shape of data tensor:',data.shape) print('Shape of label tensor',labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:traing_samples] y_train = data[:traing_samples] x_val = data[traing_samples:traing_samples+validation_samples] y_val = data[traing_samples:traing_samples+validation_samples] model = Sequential() model.add(Embedding(max_words,100,input_length=maxlen)) model.add(Flatten()) model.add(Dense(32,activation='relu')) model.add(Dense(10000,activation='sigmoid')) model.summary() model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train,y_train, epochs=1, batch_size=128, validation_data=[x_val,y_val]) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epoachs = range(1,len(acc) + 1) plt.plot(epoachs,acc,'bo',label='Training acc') plt.plot(epoachs,val_acc,'b',label = 'Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epoachs,loss,'bo',label='Training loss') plt.plot(epoachs,val_loss,'b',label = 'Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() max_len = 10000 x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len) x_test = data[10000:,0:] x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len) # 将标签转换为独热编码 y_train = np.eye(2)[y_train] y_test = data[10000:,:1] y_test = np.eye(2)[y_test]
这段代码中存在几个问题:
1. `labels` 的赋值有误。应该是 `labels = np.array(data[:, 1:])`,因为标签是从第二列开始的。
2. `validation_data` 的格式有误。应该是 `validation_data=(x_val, y_val)`,而不是 `validation_data=[x_val, y_val]`。
3. 在使用 `Sequential` 模型时,需要指定输入的维度。这里应该是 `model.add(Dense(10000, activation='sigmoid', input_dim=maxlen))`,而不是 `model.add(Dense(10000, activation='sigmoid'))`。
4. 绘制图表时,应该使用 `val_acc` 和 `val_loss`,而不是 `test_acc` 和 `test_loss`。
5. 在将标签转换为独热编码时,应该使用 `y_train[:, 0]` 和 `y_test[:, 0]`,而不是 `y_train` 和 `y_test`。
以下是修改后的代码:
```python
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(data['text'])
sequences = tokenizer.texts_to_sequences(data['text'])
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=maxlen)
labels = np.array(data[:, 1:])
print('Shape of data tensor:', data.shape)
print('Shape of label tensor', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
x_train = data[:training_samples]
y_train = labels[:training_samples]
x_val = data[training_samples:training_samples+validation_samples]
y_val = labels[training_samples:training_samples+validation_samples]
model = Sequential()
model.add(Embedding(max_words, 100, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(10000, activation='sigmoid', input_dim=maxlen))
model.summary()
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])
history = model.fit(x_train, y_train,
epochs=1,
batch_size=128,
validation_data=(x_val, y_val))
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
max_len = 10000
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len)
x_test = data[10000:, 0:]
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len)
# 将标签转换为独热编码
y_train = np.eye(2)[y_train[:, 0]]
y_test = data[10000:, 1:]
y_test = np.eye(2)[y_test[:, 0]]
```
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv('车辆:274序:4结果数据.csv') x = data[['车头间距', '原车道前车速度']].values y = data['本车速度'].values train_size = int(len(x) * 0.7) test_size = len(x) - train_size x_train, x_test = x[0:train_size,:], x[train_size:len(x),:] y_train, y_test = y[0:train_size], y[train_size:len(y)] from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) model = Sequential() model.add(LSTM(50, input_shape=(2, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(x_train.reshape(-1, 2, 1), y_train, epochs=100, batch_size=32, validation_data=(x_test.reshape(-1, 2, 1), y_test)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() train_predict = model.predict(x_train.reshape(-1, 2, 1)) test_predict = model.predict(x_test.reshape(-1, 2, 1)) train_predict = scaler.inverse_transform(train_predict) train_predict = train_predict.reshape(-1, 1) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train[0], label='train') plt.plot(train_predict[:,0], label='train predict') plt.plot(y_test[0], label='test') plt.plot(test_predict[:,0], label='test predict') plt.legend() plt.show()
这段代码是使用LSTM神经网络模型对车辆速度进行预测的例子。它首先读取了一个名为"车辆:274序:4结果数据.csv"的数据集文件,然后使用pandas库将其转换为DataFrame格式。接下来,它将数据集分为训练集和测试集,并使用MinMaxScaler进行归一化处理。然后,它使用Sequential模型创建了一个LSTM层和一个Dense层的神经网络模型,并使用均方误差作为损失函数和Adam优化器进行训练。训练过程中,它使用了100个epochs和32个batch size。最后,它使用模型对训练集和测试集进行预测,并使用反向转换将预测结果还原到原始比例。最后,它使用matplotlib库绘制了训练集和测试集的实际速度和预测速度之间的比较图。
阅读全文