解释一下这些代码:for s in range(n_informants + 1): for t in range(n_targets): self.p_plus[(n_informants,n_informants-1,t)] = 0.0 p_plus_t = 0.0 for informant_type in range(n_types): if informant_covered_payoff[informant_type][t] > informant_uncovered_payoff[informant_type][t]: p_plus_t += type_dist[informant_type] self.p_plus[(s, n_informants, t)] = comb(n_informants, s) * ( ((p_plus_t * p_w) ** s) * ((1-p_plus_t*p_w) ** (n_informants-s)) ) if s <= n_informants - 1: self.p_plus[(s, n_informants-1, t)] = comb(n_informants-1, s) * (((p_plus_t * p_w) ** s) * ((1-p_plus_t*p_w) ** (n_informants-1-s))) self.s_infty = self.no_informant_unlimited_resource_strategy() self.all_messages = set( ['target_{}_{}'.format(t, a) for t in range(n_targets) for a in ['+', '-']] ) self.all_messages.add('no_message') self.truth_message_per_type = [set() for _ in range(n_targets)] for target in range(n_targets): for informant_type in range(n_types): if informant_covered_payoff[informant_type][target] > informant_uncovered_payoff[informant_type][target]: self.truth_message_per_type[target].add('type_{}_+'.format(informant_type)) else: self.truth_message_per_type[target].add('type_{}_-'.format(informant_type))
时间: 2024-02-22 12:55:43 浏览: 80
这段代码实际上是一个循环,其中包含三个嵌套的 for 循环。先来看第一个循环:
```python
for s in range(n_informants + 1):
for t in range(n_targets):
self.p_plus[(n_informants,n_informants-1,t)] = 0.0
p_plus_t = 0.0
for informant_type in range(n_types):
if informant_covered_payoff[informant_type][t] > informant_uncovered_payoff[informant_type][t]:
p_plus_t += type_dist[informant_type]
self.p_plus[(s, n_informants, t)] = comb(n_informants, s) * ( ((p_plus_t * p_w) ** s) * ((1-p_plus_t*p_w) ** (n_informants-s)) )
if s <= n_informants - 1:
self.p_plus[(s, n_informants-1, t)] = comb(n_informants-1, s) * (((p_plus_t * p_w) ** s) * ((1-p_plus_t*p_w) ** (n_informants-1-s)))
```
第一个循环中,s 和 t 分别被初始化为 0 和 0,然后依次循环执行下面的代码块:
- 将 p_plus 字典中的一个特定位置设为 0.0。
- 初始化 p_plus_t 为 0.0。
- 对于所有的 informant_type,在 informant_covered_payoff 和 informant_uncovered_payoff 中比较对应位置的值,如果前者大于后者,则将 p_plus_t 加上 type_dist[informant_type]。
- 根据公式计算 p_plus 的值,并将其存储到 p_plus 字典的一个特定位置。
- 如果 s 小于等于 n_informants - 1,则根据公式计算 p_plus 的值,并将其存储到 p_plus 字典的另一个特定位置。
第二个循环中,则是将 self.s_infty, self.all_messages 和 self.truth_message_per_type 进行初始化。
在循环体内,使用 `set` 函数初始化了 self.all_messages,其中包括了一些字符串,这些字符串都是 'target_i_+' 或 'target_i_-' 的形式,其中 i 为目标的编号。这些字符串表示了不同的信息类型。
接下来,使用一个双重循环遍历所有目标和所有 informant_type,将真实信息存储到 self.truth_message_per_type 中。如果 informant_covered_payoff 大于 informant_uncovered_payoff,则认为 informant_type 可以提供正确的信息,因此将 'type_i_+' 加入到对应的 self.truth_message_per_type[target] 中。否则,将 'type_i_-' 加入到对应的 self.truth_message_per_type[target] 中。
阅读全文