图解蚁群算法python
时间: 2023-10-13 16:26:23 浏览: 114
python实现蚁群算法
蚁群算法是一种模拟蚂蚁觅食行为的启发式算法,用于解决优化问题。下面是一个简单的Python代码示例,用于图解蚁群算法:
```python
import numpy as np
# 创建地图
graph = [[0, 2, 4, 5],
[2, 0, 1, 6],
[4, 1, 0, 3],
[5, 6, 3, 0]]
# 蚂蚁数量
num_ants = 10
# 蚂蚁位置
ant_location = np.zeros(num_ants, dtype=np.int)
# 蚂蚁经过的路径
ant_path = np.zeros((num_ants, len(graph)), dtype=np.int)
# 蚂蚁访问状态
visited = np.zeros(len(graph), dtype=bool)
# 蚂蚁已经访问的城市数量
visited_count = np.zeros(num_ants, dtype=np.int)
# 蚂蚁到达终点的标志
finished = np.zeros(num_ants, dtype=bool)
# 启发因子(信息素浓度和距离的权重)
alpha = 1.0
beta = 2.0
# 信息素浓度
pheromone = np.ones_like(graph)
# 距离矩阵
distance = np.array(graph)
# 迭代次数
num_iterations = 100
# 主循环
for iteration in range(num_iterations):
# 每只蚂蚁选择下一个城市
for ant in range(num_ants):
if not finished[ant]:
current_city = ant_location[ant]
unvisited_cities = np.where(~visited)
# 计算城市之间的转移概率
probabilities = np.power(pheromone[current_city, unvisited_cities], alpha) * np.power(1.0 / distance[current_city, unvisited_cities], beta)
probabilities /= np.sum(probabilities)
# 选择下一个城市
next_city = np.random.choice(unvisited_cities, p=probabilities)
ant_path[ant, visited_count[ant]] = next_city
visited[next_city] = True
visited_count[ant] += 1
ant_location[ant] = next_city
# 判断是否到达终点
if visited_count[ant] == len(graph) - 1:
finished[ant] = True
# 更新信息素浓度
pheromone *= 0.5 # 挥发
for ant in range(num_ants):
for i in range(len(graph) - 1):
city_1 = ant_path[ant, i]
city_2 = ant_path[ant, i + 1]
pheromone[city_1, city_2] += 1.0 / distance[city_1, city_2]
# 打印结果
for ant in range(num_ants):
print("Ant {}: {}".format(ant, ant_path[ant]))
```
这段代码实现了蚁群算法的基本过程,包括蚂蚁选择下一个城市、更新信息素浓度等步骤。在每次迭代中,蚂蚁根据信息素浓度和距离的权重选择下一个城市,直到所有蚂蚁都到达终点或达到最大迭代次数为止。最终打印出每只蚂蚁的路径。你可以根据自己的优化问题进行相应的修改和扩展。
阅读全文