现在有一个回归问题,要用keras建立BP神经网络模型,并且用粒子群优化算法优化模型,得到最佳参数,用交叉验证得出训练集和测试集的RMSE,画出RMSE迭代图
时间: 2024-05-10 09:20:25 浏览: 192
首先,我们需要导入所需的库和数据集:
```python
import numpy as np
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx
from pyswarms.utils.plotters import plot_cost_history, plot_contour, plot_surface
# 生成随机数据
X, y = make_regression(n_samples=500, n_features=10, noise=0.1, random_state=42)
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
接下来,我们需要定义一个函数来创建神经网络模型:
```python
def create_model(n_inputs, n_outputs, n_hidden_layers, n_neurons_per_layer, activation_function):
# 创建Sequential模型
model = Sequential()
# 添加输入层和第一个隐藏层
model.add(Dense(n_neurons_per_layer, input_dim=n_inputs, activation=activation_function))
# 添加更多的隐藏层
for i in range(n_hidden_layers-1):
model.add(Dense(n_neurons_per_layer, activation=activation_function))
# 添加输出层
model.add(Dense(n_outputs))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
return model
```
然后,我们可以使用pyswarms库中的PSO类来优化神经网络模型的参数:
```python
# 定义适应度函数
def fitness_function(params, X_train, y_train):
# 解压参数
n_inputs, n_outputs, n_hidden_layers, n_neurons_per_layer, activation_function = params
# 创建模型
model = create_model(n_inputs, n_outputs, n_hidden_layers, n_neurons_per_layer, activation_function)
# 训练模型
model.fit(X_train, y_train, epochs=50, verbose=0)
# 计算RMSE
y_pred = model.predict(X_train)
rmse = np.sqrt(np.mean((y_train - y_pred)**2))
return rmse
# 定义PSO优化器
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=5, options={'c1': 0.5, 'c2': 0.3, 'w':0.9})
# 运行PSO
best_params, best_cost = optimizer.optimize(fitness_function, iters=50, X_train=X_train, y_train=y_train)
```
最后,我们可以使用找到的最佳参数来创建最终的模型,并使用交叉验证来评估模型的性能:
```python
# 创建最终模型
model = create_model(*best_params)
# 训练模型
model.fit(X_train, y_train, epochs=50, verbose=0)
# 评估模型性能
y_train_pred = model.predict(X_train)
train_rmse = np.sqrt(np.mean((y_train - y_train_pred)**2))
y_test_pred = model.predict(X_test)
test_rmse = np.sqrt(np.mean((y_test - y_test_pred)**2))
print('Training RMSE:', train_rmse)
print('Testing RMSE:', test_rmse)
```
最后,我们可以使用pyswarms库中的plot_cost_history函数来绘制RMSE迭代图:
```python
plot_cost_history(optimizer.cost_history)
```
这样就完成了使用keras和粒子群优化算法来建立BP神经网络模型的过程。
阅读全文