autoencoder matlab
时间: 2024-02-10 09:08:57 浏览: 119
以下是两种Matlab中实现autoencoder的例子:
1. 深度信念网络自动编码器(Deep Belief Network Autoencoder)
```matlab
% 导入数据
load mnist_uint8;
% 数据预处理
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
% 设置网络参数
rand('state',0)
dbn.sizes = [1000 1000 1000];
opts.numepochs = 1;
opts.batchsize = 100;
% 训练深度信念网络
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
% 使用深度信念网络进行编码和解码
nn = dbnunfoldtonn(dbn, 10);
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
% 显示结果
disp(['测试集错误率: ', num2str(er)]);
```
2. One-hot向量的Autoencoder
```matlab
% 导入数据
load data.mat;
% 设置网络参数
inputSize = size(trainData, 1);
hiddenSize = 100;
outputSize = size(trainData, 1);
lambda = 0.0001;
beta = 3;
sparsityParam = 0.01;
maxIter = 400;
% 初始化网络权重
theta = initializeParameters(hiddenSize, inputSize, outputSize);
% 训练Autoencoder
[optTheta, cost] = minFunc(@(p) sparseAutoencoderCost(p, inputSize, hiddenSize, outputSize, lambda, sparsityParam, beta, trainData), theta, options);
% 使用训练好的Autoencoder进行编码和解码
W1 = reshape(optTheta(1:hiddenSize*inputSize), hiddenSize, inputSize);
b1 = optTheta(2*hiddenSize*inputSize+1:2*hiddenSize*inputSize+hiddenSize);
W2 = reshape(optTheta(hiddenSize*inputSize+1:2*hiddenSize*inputSize), outputSize, hiddenSize);
b2 = optTheta(2*hiddenSize*inputSize+hiddenSize+1:end);
% 显示结果
display_network(W1');
```
阅读全文