stm32f407hal库输出固定周期数正弦波
时间: 2023-08-29 13:12:23 浏览: 72
stm32的DAC输出正弦波.doc
5星 · 资源好评率100%
以下是使用STM32F407HAL库输出固定周期数正弦波的示例代码:
```c
#include "stm32f4xx_hal.h"
#include "math.h"
#define PI 3.14159265358979323846f
TIM_HandleTypeDef htim2;
DAC_HandleTypeDef hdac;
float freq = 1000.0f; // 正弦波频率
uint32_t sampleRate = 100000; // 采样率
uint32_t period = 0;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DAC_Init(void);
static void MX_TIM2_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DAC_Init();
MX_TIM2_Init();
HAL_DAC_Start(&hdac, DAC_CHANNEL_1);
period = sampleRate / freq;
while (1)
{
for (uint32_t i = 0; i < period; i++)
{
float x = (float)i / (float)period;
float y = sinf(2 * PI * freq * x);
uint16_t value = (uint16_t)(y * 2048.0f + 2048.0f);
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
HAL_Delay(1);
}
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_DAC_Init(void)
{
DAC_ChannelConfTypeDef sConfig = {0};
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
sConfig.DAC_Trigger = DAC_TRIGGER_T2_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM2_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
htim2.Instance = TIM2;
htim2.Init.Prescaler = (SystemCoreClock / sampleRate) - 1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = period - 1;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void Error_Handler(void)
{
while (1)
{
}
}
```
在上面的示例代码中,我们使用DAC输出正弦波信号,使用TIM2定时器来控制采样率和输出周期,使用GPIO配置DAC输出的引脚。
在main函数中,我们首先初始化系统时钟和各个外设,然后计算出输出周期,然后进入无限循环中,每次循环中都会根据当前的输出周期计算出正弦波的值,然后将其输出到DAC中。
需要注意的是,由于输出周期是固定的,因此我们在计算正弦波的值时,需要使用当前的输出周期来计算正弦波的相位,从而保证输出的正弦波信号频率固定。同时,在每次循环中,我们还需要通过HAL_Delay函数来延时一定的时间,以保证输出的信号频率不会过高。
阅读全文