在作kcf跟踪时,set_activity/type的作用是什么

时间: 2024-06-08 11:09:43 浏览: 75
在使用 KCF 跟踪算法时,`set_activity` 和 `set_type` 是 Tracker 类中的两个重要方法。它们的作用如下: - `set_activity`: 设置跟踪器的活跃状态。当跟踪目标时,跟踪器的活跃状态应该为 true,否则为 false。设置跟踪器的活跃状态可以控制跟踪器在跟踪目标时的计算量,从而提高跟踪的效率。 - `set_type`: 设置跟踪器的类型。KCF 跟踪算法有多种不同的变体,每个变体都有不同的参数和性能特点。通过设置跟踪器的类型,可以选择最适合当前跟踪任务的算法变体,从而提高跟踪的精度和效率。 总的来说,`set_activity` 和 `set_type` 方法可以让我们更好地控制和优化 KCF 跟踪算法的性能,从而实现更好的跟踪效果。
相关问题

kcf无人机跟踪小车ros代码,要求订阅/iris/usb_cam/image_raw话题,发布mavros/setpoint_position/local和/mavros/setpoint_velocity/cmd_vel_unstamped

以下是一个简单的ROS节点示例,用于使用KCF算法跟踪小车并发布位置和速度指令到MAVROS。 ```python #!/usr/bin/env python import rospy from sensor_msgs.msg import Image from cv_bridge import CvBridge import cv2 import numpy as np from pyimagesearch.centroidtracker import CentroidTracker from pyimagesearch.trackableobject import TrackableObject from geometry_msgs.msg import PoseStamped, Twist class KCFTrackerNode: def __init__(self): rospy.init_node('kcf_tracker_node', anonymous=True) self.bridge = CvBridge() self.ct = CentroidTracker() self.trackers = [] self.trackable_objects = {} self.image_sub = rospy.Subscriber('/iris/usb_cam/image_raw', Image, self.image_callback) self.position_pub = rospy.Publisher('/mavros/setpoint_position/local', PoseStamped, queue_size=1) self.velocity_pub = rospy.Publisher('/mavros/setpoint_velocity/cmd_vel_unstamped', Twist, queue_size=1) self.image_width = 640 self.image_height = 480 self.focal_length = 600 self.real_width = 0.5 self.target_width = 0.1 def image_callback(self, data): cv_image = self.bridge.imgmsg_to_cv2(data, 'bgr8') if len(self.trackers) == 0: # initialize trackers objects = self.ct.update([(0, 0, self.image_width, self.image_height)]) for (object_id, centroid) in objects.items(): tracker = cv2.TrackerKCF_create() tracker.init(cv_image, (centroid[0], centroid[1], self.target_width * self.focal_length, self.target_width * self.focal_length)) self.trackers.append(tracker) self.trackable_objects[object_id] = TrackableObject(object_id, centroid) else: # update trackers for tracker in self.trackers: success, box = tracker.update(cv_image) if success: (x, y, w, h) = [int(v) for v in box] centroid = (x + w / 2, y + h / 2) object_id = self.ct.register(centroid) to = self.trackable_objects.get(object_id, None) if to is None: to = TrackableObject(object_id, centroid) self.trackable_objects[object_id] = to else: to.centroids.append(centroid) # filter out small objects self.trackable_objects = {k: v for k, v in self.trackable_objects.items() if len(v.centroids) > 5 and v.width() > self.image_width * 0.1} # update position and velocity commands for object_id, to in self.trackable_objects.items(): x = (to.centroids[-1][0] - self.image_width / 2) * self.real_width / self.focal_length y = (to.centroids[-1][1] - self.image_height / 2) * self.real_width / self.focal_length z = 2.0 pose_msg = PoseStamped() pose_msg.header.stamp = rospy.Time.now() pose_msg.pose.position.x = x pose_msg.pose.position.y = y pose_msg.pose.position.z = z self.position_pub.publish(pose_msg) vx = (to.centroids[-1][0] - to.centroids[-2][0]) * self.real_width / self.focal_length vy = (to.centroids[-1][1] - to.centroids[-2][1]) * self.real_width / self.focal_length vz = 0.0 vel_msg = Twist() vel_msg.linear.x = vx vel_msg.linear.y = vy vel_msg.linear.z = vz self.velocity_pub.publish(vel_msg) if __name__ == '__main__': try: node = KCFTrackerNode() rospy.spin() except rospy.ROSInterruptException: pass ``` 请注意,此节点使用了pyimagesearch库中的CentroidTracker和TrackableObject类,您需要先安装此库: ```bash pip install imutils ``` 此外,这里的代码将图像中间作为目标点,将图像宽度的10%用作最小目标宽度,将真实世界中的实际宽度设置为0.5米。您可能需要根据您的具体应用程序进行一些修改。

Running command: "make cmake_check_build_system" in "/home/mps/kcf_ws/build

回答: 根据引用\[1\]的内容,出现了一个错误信息,指出在执行命令"make -j2 -l2"时,没有找到目标文件'robot_voice/CMakeFiles/iat_publish.dir/build',导致编译失败。这可能是由于缺少相关的依赖或配置错误所致。而引用\[2\]提供了一个解决方法,针对Ubuntu 20.04和ROS Noetic版本,可以尝试使用以下命令来安装serial包: sudo apt-get install ros-noetic-serial。这样可以解决在ROS Noetic版本中缺少serial包的问题。请注意,这个解决方法是基于引用\[2\]中提供的信息,如果你的情况不同,请提供更多的上下文信息以便我能够更准确地回答你的问题。 #### 引用[.reference_title] - *1* [######## Running command: “make cmake_check_build_system“ in “/home/jjy/catkin_ws/build“########](https://blog.csdn.net/weixin_45684863/article/details/122074533)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [“make cmake_check_build_system”](https://blog.csdn.net/weixin_44439003/article/details/121396180)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
阅读全文

相关推荐

最新推荐

recommend-type

opencv3/C++ 使用Tracker实现简单目标跟踪

探测器本地化所观察到的所有外观,并在必要时纠正跟踪器。学习估计检测器的错误并进行更新以避免再出现这些错误。该算法可以处理快速运动、部分遮挡、物体缺失等情况。 KCF Tracker: KCF Tracker 使用目标周围区域...
recommend-type

python实现图像外边界跟踪操作

以上代码创建了一个KCF跟踪器,初始化后,每帧都会更新目标位置并在帧上显示跟踪结果。 总结来说,图像外边界跟踪和目标跟踪是两种不同的图像处理技术,前者关注于找到并描绘图像边缘,后者专注于在视频序列中定位...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单