使用pytorch构建一个三层12个神经元的BP神经网络多输入多输出预测模型,以0.7:0.15:0.15划分训练集、验证集、测试集,以RMSE评价模型的有效性,梯度下降法作为优化器,给每一行代码标出注释

时间: 2024-06-04 09:12:53 浏览: 101
好的,我会按照您的要求进行回答。 以下是代码实现: import torch import torch.nn as nn import torch.optim as optim import numpy as np from sklearn.metrics import mean_squared_error # 定义多输入多输出BP神经网络模型 class BPNN(nn.Module): def __init__(self, input_size, output_size, hidden_size): super().__init__() self.fc1 = nn.Linear(input_size, hidden_size) # 第一层全连接层 self.fc2 = nn.Linear(hidden_size, hidden_size) # 第二层全连接层 self.fc3 = nn.Linear(hidden_size, output_size) # 第三层全连接层 def forward(self, x): x = torch.relu(self.fc1(x)) # 使用ReLU激活函数 x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义训练函数 def train(model, train_loader, criterion, optimizer, device): model.train() # 模型设为训练状态 train_loss = 0 for inputs, targets in train_loader: inputs = inputs.to(device) targets = targets.to(device) optimizer.zero_grad() # 梯度清零 outputs = model(inputs) # 正向传播 loss = criterion(outputs, targets) # 计算损失 loss.backward() # 反向传播 optimizer.step() # 更新权重 train_loss += loss.item() * inputs.size(0) # 累计训练损失 return train_loss # 定义验证函数 def validate(model, val_loader, criterion, device): model.eval() # 模型设为评估状态 val_loss = 0 with torch.no_grad(): for inputs, targets in val_loader: inputs = inputs.to(device) targets = targets.to(device) outputs = model(inputs) # 正向传播 loss = criterion(outputs, targets) # 计算损失 val_loss += loss.item() * inputs.size(0) # 累计验证损失 return val_loss # 定义测试函数 def test(model, test_loader, device): model.eval() # 模型设为评估状态 y_true = [] y_pred = [] with torch.no_grad(): for inputs, targets in test_loader: inputs = inputs.to(device) targets = targets.to(device) outputs = model(inputs) # 正向传播 y_true.extend(targets.cpu().numpy().tolist()) # 累计测试真实值 y_pred.extend(outputs.cpu().numpy().tolist()) # 累计测试预测值 rmse = np.sqrt(mean_squared_error(y_true, y_pred)) # 计算RMSE return rmse # 定义主函数 def main(): # 数据准备 X = np.random.randn(100, 5) # 生成100个5维的输入特征 Y = X[:,0]*2 + X[:,1]*(-3) + X[:,2]*0.5 + np.random.randn(100)*0.5 # 生成随机的输出值 X_train, X_val, X_test = np.split(X, [int(0.7*len(X)), int(0.85*len(X))]) # 数据集划分 Y_train, Y_val, Y_test = np.split(Y, [int(0.7*len(Y)), int(0.85*len(Y))]) train_dataset = torch.utils.data.TensorDataset(torch.Tensor(X_train), torch.Tensor(Y_train)) # 将数据转化为torch.Tensor val_dataset = torch.utils.data.TensorDataset(torch.Tensor(X_val), torch.Tensor(Y_val)) test_dataset = torch.utils.data.TensorDataset(torch.Tensor(X_test), torch.Tensor(Y_test)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=10, shuffle=True) # 数据加载器 val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=10) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=10) # 模型训练 input_size = 5 # 输入特征维度 output_size = 1 # 输出维度 hidden_size = 12 # 隐层神经元数量 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 判断是否有可用的GPU model = BPNN(input_size, output_size, hidden_size).to(device) # 初始化模型 criterion = nn.MSELoss() # 定义损失函数 optimizer = optim.SGD(model.parameters(), lr=0.01) # 定义优化器 for epoch in range(100): # 遍历训练集100次 train_loss = train(model, train_loader, criterion, optimizer, device) val_loss = validate(model, val_loader, criterion, device) print('Epoch {}: Train Loss: {:.4f}, Val Loss: {:.4f}'.format(epoch+1, train_loss, val_loss)) # 模型测试 rmse = test(model, test_loader, device) print('Test RMSE: {:.4f}'.format(rmse)) # 运行主函数 if __name__ == "__main__": main() 代码注释已标出,希望能够帮助您解决问题。如果您还有其他问题,可以继续向我提问。

相关推荐

最新推荐

recommend-type

Pytorch: 自定义网络层实例

在PyTorch中,自定义网络层是一项重要的功能,它允许开发者根据特定需求构建个性化的神经网络模型。本篇文章将详细讲解如何在PyTorch中实现自定义的网络层,特别是利用自动微分机制来简化复杂的计算过程。 首先,让...
recommend-type

pytorch下使用LSTM神经网络写诗实例

在本文中,我们将探讨如何使用PyTorch实现一个基于LSTM(Long Short-Term Memory)神经网络的诗歌生成系统。LSTM是一种递归神经网络(RNN)变体,特别适合处理序列数据,如文本,因为它能有效地捕获长期依赖性。 ...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

关于pytorch中全连接神经网络搭建两种模式详解

在PyTorch中,全连接神经网络(也称为多层感知器)是构建深度学习模型的基础组件。本文将深入探讨两种常见的神经网络搭建模式。 **第一种模式:使用`nn.Sequential`构建网络** 在PyTorch中,`nn.Sequential`容器...
recommend-type

基于python的BP神经网络及异或实现过程解析

总的来说,这个基于Python的BP神经网络实现展示了如何用Python构建、训练和优化一个简单的神经网络模型。通过实例代码,我们可以理解BP神经网络的工作原理,并了解如何解决非线性问题,如异或。然而,实际应用中可能...
recommend-type

多功能HTML网站模板:手机电脑适配与前端源码

资源摘要信息:"该资源为一个网页模板文件包,文件名明确标示了其内容为一个适用于手机和电脑网站的HTML源码,特别强调了移动端前端和H5模板。下载后解压缩可以获得一个自适应、响应式的网页源码包,可兼容不同尺寸的显示设备。 从标题和描述中可以看出,这是一个专门为前端开发人员准备的资源包,它包含了网页的前端代码,主要包括HTML结构、CSS样式和JavaScript脚本。通过使用这个资源包,开发者可以快速搭建一个适用于手机、平板、笔记本和台式电脑等不同显示设备的网站,这些网站能够在不同设备上保持良好的用户体验,无需开发者对每个设备进行单独的适配开发。 标签‘网页模板’表明这是一个已经设计好的网页框架,开发者可以在其基础上进行修改和扩展,以满足自己的项目需求。‘前端源码’说明了这个资源包包含的是网页的前端代码,不包括后端代码。‘js’和‘css’标签则直接指出了这个资源包中包含了JavaScript和CSS代码,这些是实现网页功能和样式的关键技术。 通过文件名称列表,我们可以得知这个资源包的文件名称为'799'。由于实际的文件结构未列出,我们可以推测,这个文件名称可能是资源包的根目录名称,或者是包含了多个文件和文件夹的压缩包。在解压后,用户可能会发现包括HTML文件、CSS样式表文件、JavaScript脚本文件以及其他可能的资源文件,如图片、字体文件等。 HTML是网页的基础结构,负责构建网页的框架和内容部分。CSS负责网页的视觉效果和布局,包括颜色、字体、间距、响应式设计等。JavaScript则用于添加交互功能,比如按钮点击、表单验证、动态内容加载等。响应式设计是现代网页设计的重要概念,它允许网页在不同尺寸的屏幕上展示相同的布局效果,这种设计对于提高用户的移动设备访问体验至关重要。 对于前端开发者来说,使用这类资源包可以节省大量的开发时间,并能够快速实现一个设计精良、功能完善的网站前端。开发者仅需根据自己的项目需求进行必要的代码修改和功能扩展即可。同时,这样的资源包也有助于那些初学者快速学习网页设计和前端开发的基础知识,因为它们可以直接查看和理解已经实现的代码,而不是从零开始编写每一个部分。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【使用docutils.parsers.rst进行技术文档的自动化管理】:释放生产力,让文档管理自动化成为现实

![【使用docutils.parsers.rst进行技术文档的自动化管理】:释放生产力,让文档管理自动化成为现实](https://opengraph.githubassets.com/29a46f977e4440fb621093cd902f0b16a1bc07b41dd3347c7aaeaac507da0075/sphinx-doc/sphinx) # 1. 技术文档管理的现状与挑战 随着信息技术的快速发展,技术文档作为知识传递和软件交付的重要媒介,其管理现状和面临的挑战日益引起业界的关注。文档的编写和维护工作量巨大,尤其是在大型项目中,文档不仅需要保持与代码同步更新,还要确保内容的准确
recommend-type

如何用c语言建立一个顺序结构的线性表

在C语言中,你可以使用数组或者链表数据结构来创建一个简单的顺序结构的线性表,这里我会分别讲解这两种方法。 **1. 使用数组实现顺序表** ```c typedef struct { int data[ capacity ]; // 容量预先设定的数组元素 int size; // 当前元素的数量 } LinearListArray; // 动态分配数组并初始化 LinearListArray* createArrayList(int capacity) { LinearListArray *list = malloc(sizeof(Line
recommend-type

echarts实战:构建多组与堆叠条形图可视化模板

资源摘要信息:"本资源为使用echarts进行数据可视化的一个教程模板,专门讲解如何实现多组条形图和堆叠条形图的设计与开发。教程适用于数据分析师、前端开发工程师等对可视化技术有一定了解的专业人士。通过本教程,用户能够学习到如何利用echarts这一强大的JavaScript图表库,将复杂的数据集以直观、易读的图表形式展现出来。" ### echarts概述 echarts是一个使用JavaScript编写的开源可视化库,它提供了一个简单易用的API,允许用户快速创建各种图表类型。echarts支持在网页中嵌入图表,并且可以与各种前端技术栈进行集成,如React、Vue、Angular等。它的图表类型丰富,包括但不限于折线图、柱状图、饼图、散点图等。此外,echarts具有高度的可定制性,用户可以自定义图表的样式、动画效果、交互功能等。 ### 多组条形图 多组条形图是一种常见的数据可视化方式,它能够展示多个类别中每个类别的数值分布。在echarts中实现多组条形图,首先要准备数据集,然后通过配置echarts图表的参数来设定图表的系列(series)和X轴、Y轴。每个系列可以对应不同的颜色、样式,使得在同一个图表中,不同类别的数据可以清晰地区分开来。 #### 实现多组条形图的步骤 1. 引入echarts库,可以在HTML文件中通过`<script>`标签引入echarts的CDN资源。 2. 准备数据,通常是一个二维数组,每一行代表一个类别,每一列代表不同组的数值。 3. 初始化echarts实例,通过获取容器(DOM元素),然后调用`echarts.init()`方法。 4. 设置图表的配置项,包括标题、工具栏、图例、X轴、Y轴、系列等。 5. 使用`setOption()`方法,将配置项应用到图表实例上。 ### 堆叠条形图 堆叠条形图是在多组条形图的基础上发展而来的,它将多个条形图堆叠在一起,以显示数据的累积效果。在echarts中创建堆叠条形图时,需要将系列中的每个数据项设置为堆叠值相同,这样所有的条形图就会堆叠在一起,形成一个完整的条形。 #### 实现堆叠条形图的步骤 1. 准备数据,与多组条形图类似,但是重点在于设置堆叠字段,使得具有相同堆叠值的数据项能够堆叠在一起。 2. 在配置项中设置`stack`属性,将具有相同值的所有系列设置为堆叠在一起。 3. 其余步骤与多组条形图类似,但堆叠条形图侧重于展示总量与各部分的比例关系。 ### 配置项详解 - **标题(title)**:图表的标题,可以定义其位置、样式等。 - **工具栏(toolbox)**:提供导出图片、数据视图、缩放等功能的工具。 - **图例(legend)**:显示图表中各个系列的名称,以及控制系列的显示或隐藏。 - **X轴和Y轴(xAxis/yAxis)**:轴的配置,可以设置轴的类型、位置、标签样式等。 - **系列(series)**:图表中的数据集合,可以设置为多组条形图或堆叠条形图。 ### 文件名称解析 - **style.css**:该文件可能包含了与echarts图表相关的样式定义,用于美化图表。 - **多组条形图&堆叠条形图.html**:这是一个HTML文件,其中包含了用于显示图表的HTML结构,以及初始化echarts实例的JavaScript代码。 - **script.js**:该文件用于编写实现多组条形图和堆叠条形图逻辑的JavaScript代码。 在实际开发过程中,开发者需要结合具体的数据集,调整配置项中的`data`属性,以适应不同的应用场景。通过调整配置项,echarts图表的展现形式可以灵活地适应各种业务需求,包括但不限于颜色主题、交互逻辑、动画效果等。此外,echarts还提供了丰富的文档和社区支持,可以帮助开发者解决在实际开发过程中遇到的问题。