Tensorflow+自然语言处理+LSTM 搭建智能聊天机器人的代码实现
时间: 2023-08-08 15:06:40 浏览: 139
以下是使用Tensorflow、自然语言处理和LSTM搭建智能聊天机器人的代码实现:
1. 导入必要的库和模块:
```python
import tensorflow as tf
import numpy as np
import random
import json
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
```
2. 加载和预处理数据集:
```python
words = []
classes = []
documents = []
ignore_words = ['?', '!']
data_file = open('intents.json').read()
intents = json.loads(data_file)
for intent in intents['intents']:
for pattern in intent['patterns']:
# 将句子分词
w = nltk.word_tokenize(pattern)
words.extend(w)
# 将句子、分类、标记添加到文档中
documents.append((w, intent['tag']))
# 将分类添加到分类列表中
if intent['tag'] not in classes:
classes.append(intent['tag'])
# 对单词进行词形还原和去重
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
# 对分类进行排序
classes = sorted(list(set(classes)))
# 打印统计信息
print (len(documents), "documents")
print (len(classes), "classes", classes)
print (len(words), "unique lemmatized words", words)
```
3. 创建训练和测试数据集:
```python
# 创建训练数据
training = []
output_empty = [0] * len(classes)
for doc in documents:
# 初始化一个空的单词列表
bag = []
# 获取已知单词列表中的词形还原单词
pattern_words = doc[0]
pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
# 将单词添加到单词列表中
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
# 创建训练样本
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# 打乱训练数据并将其转换为numpy数组
random.shuffle(training)
training = np.array(training)
# 创建训练和测试集
train_x = list(training[:,0])
train_y = list(training[:,1])
```
4. 创建模型:
```python
# 定义模型参数
input_layer = tf.keras.layers.Input(shape=(len(train_x[0]),))
hidden_layer_1 = tf.keras.layers.Dense(8, activation='relu')(input_layer)
hidden_layer_2 = tf.keras.layers.Dense(8, activation='relu')(hidden_layer_1)
output_layer = tf.keras.layers.Dense(len(train_y[0]), activation='softmax')(hidden_layer_2)
# 创建模型
model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer)
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
5. 训练模型:
```python
# 训练模型
history = model.fit(np.array(train_x), np.array(train_y), epochs=1000, batch_size=8, verbose=1)
```
6. 将模型保存为HDF5文件:
```python
# 将模型保存为HDF5文件
model.save('chatbot_model.h5', history)
```
7. 加载模型并进行预测:
```python
# 加载模型
model = tf.keras.models.load_model('chatbot_model.h5')
# 创建一个字典将单词映射到索引
words_dict = {word: i for i, word in enumerate(words)}
# 创建一个函数用于将输入句子转换为模型输入
def bag_of_words(sentence, words_dict):
# 初始化一个空的单词列表
bag = [0] * len(words_dict)
# 将输入句子分词并进行词形还原
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
# 将句子中存在于已知单词列表中的单词标记为1
for w in sentence_words:
if w in words_dict:
bag[words_dict[w]] = 1
return np.array(bag)
# 创建一个函数用于获取模型预测结果中具有最高概率的标签
def predict_class(sentence, model):
# 将输入句子转换为模型输入
bow = bag_of_words(sentence, words_dict)
# 根据模型预测输出结果
result = model.predict(np.array([bow]))[0]
# 获取预测输出结果中具有最高概率的标签
threshold = 0.25
results = [[i, r] for i, r in enumerate(result) if r > threshold]
# 将结果按概率值排序
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({'intent': classes[r[0]], 'probability': str(r[1])})
return return_list
# 创建一个函数用于获取对话机器人的响应
def get_response(intents_list, intents_json):
tag = intents_list[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
return result
# 进行对话
while True:
message = input("")
intents_list = predict_class(message, model)
result = get_response(intents_list, intents)
print(result)
```
注意:以上代码仅为示例,实际使用时需要根据数据集和问题的特定情况进行修改和优化。
阅读全文