DQN中神经网络的训练过程是什么
时间: 2023-10-23 13:14:49 浏览: 174
DQN(Deep Q-Network)是一种深度强化学习算法,用于解决马尔可夫决策过程(MDP)中的控制问题。DQN算法的神经网络训练过程主要分为以下几个步骤:
1. 初始化神经网络的参数和经验回放缓存。
2. 在每个时间步,智能体选择动作并执行,将状态、动作、奖励、下一个状态存储在经验回放缓存中。
3. 从经验回放缓存中随机抽样一批数据,用于神经网络的训练。
4. 计算Q值的目标值,即利用贝尔曼方程计算下一个状态的最大Q值,加上当前的奖励。
5. 计算神经网络的Q值输出,并计算Q值的损失函数。
6. 通过反向传播算法更新神经网络的参数,使得损失函数最小化。
7. 定期将当前的神经网络参数复制到目标网络中,用于计算Q值的目标值。
训练过程通常会重复执行若干个回合,直到神经网络收敛到最优策略。
相关问题
rnn循环神经网络dqn
### RNN与DQN在深度强化学习中的应用
#### 循环神经网络(RNN)
循环神经网络(RNN)是一种用于处理序列数据的神经网络结构。不同于标准前馈神经网络,RNN具有内部记忆机制,使其能够捕捉时间序列中的依赖关系。这种特性使得RNN非常适合于自然语言处理、语音识别等领域,在这些领域中输入通常是按顺序排列的数据流。
对于特定的时间步$t$,给定当前时刻的状态$h_{t}$ 和上一时刻隐藏层状态$h_{t-1}$ ,以及对应的输入$x_t$ , 可以定义如下更新规则:
```python
import torch.nn as nn
class SimpleRNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(SimpleRNN, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, h0=None):
out, hn = self.rnn(x, h0) # rnn with input and initial hidden state
out = self.fc(out[:, -1, :]) # only want the last time step's output
return out
```
此代码片段展示了如何构建一个简单的单层RNN模型[^2]。
#### 深度Q网络(DQN)
深度Q-Learning (Deep Q-Network, DQN),作为连接深度学习和强化学习的关键桥梁之一,利用深层神经网络来逼近环境的动作价值函数(Q-function), 并采用经验回放(experience replay) 技术提高样本利用率,解决了传统QLearning面临的维度灾难问题。其损失函数$L(\theta)$ 定义为:
\[L(\theta)=\mathbb{E}_{(s,a,r,s')∼D}\left[\left(y-Q(s,a;\theta)\right)^2\right]\]
其中$y=r+\gamma max_a'Q(s',a';\theta^-)$ 表示目标Q值;$\theta^-$表示固定的目标网络参数;而$s$, $a$, $r$, $s'$ 则分别代表状态、动作、即时奖励及其后续状态[^5].
以下是简化版DQN算法的具体实现方式:
```python
import random
from collections import namedtuple, deque
import gymnasium as gym
import numpy as np
import torch.optim as optim
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.memory = deque([], maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class DQN(nn.Module):
def __init__(self, n_observations, n_actions):
super(DQN, self).__init__()
self.layer1 = nn.Linear(n_observations, 128)
self.layer2 = nn.Linear(128, 128)
self.layer3 = nn.Linear(128, n_actions)
# Called with either one element to determine next action, or a batch during optimization.
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
return self.layer3(x)
env = gym.make("CartPole-v1")
# set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
plt.ion()
# if GPU is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BATCH_SIZE = 128
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
TAU = 0.005
LR = 1e-4
n_actions = env.action_space.n
state, info = env.reset()
n_observations = len(state)
policy_net = DQN(n_observations, n_actions).to(device)
target_net = DQN(n_observations, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long)
episode_durations = []
num_episodes = 500
for i_episode in range(num_episodes):
# Initialize the environment and get its state
state, info = env.reset()
state = torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
for t in count():
action = select_action(state)
observation, reward, terminated, truncated, _ = env.step(action.item())
reward = torch.tensor([reward], device=device)
done = terminated or truncated
if terminated:
next_state = None
else:
next_state = torch.tensor(observation, dtype=torch.float32, device=device).unsqueeze(0)
memory.push(state, action, next_state, reward)
state = next_state
optimize_model()
if done:
episode_durations.append(t + 1)
plot_durations()
break
target_net_state_dict = target_net.state_dict()
policy_net_state_dict = policy_net.state_dict()
for key in policy_net_state_dict:
target_net_state_dict[key] = policy_net_state_dict[key]*TAU + target_net_state_dict[key]*(1-TAU)
target_net.load_state_dict(target_net_state_dict)
print('Complete')
plot_durations(show_result=True)
plt.ioff()
plt.show()
```
这段Python脚本实现了经典的DQN训练过程,包括初始化环境、创建两个相同的神经网络实例(即策略网络`policy_net`和目标网络`target_net`)、设置优化器、建立经验池等操作,并通过不断交互获取新的观测结果来进行迭代更新权重参数[^3]。
DQN训练过程的伪代码
### DQN (Deep Q-Network) 训练过程伪代码
在强化学习领域,DQN算法通过引入经验回放机制和目标网络来稳定并改善传统Q-learning的学习效果[^1]。
```python
Initialize replay memory capacity N to store transitions
Initialize action-value function Q with random weights θ
Initialize target network Q' with weight θ'=θ
For episode = 1, M do
Initialize sequence s_1={x_1} and preprocessed sequenced φ_1=φ(s_1)
For t = 1, T do
With probability ε select a random action a_t
otherwise select a_t=max_a(Q(φ(s_t),a;θ))
Execute action a_t in emulator and observe reward r_t and image x_{t+1}
Set s_{t+1}=s_t,a_t,x_{t+1} and preprocess φ_{t+1}=φ(s_{t+1})
Store transition (φ_t, a_t, r_t, φ_{t+1}) in D
Sample random minibatch of transitions (φ_j, a_j, r_j, φ_{j+1}) from D
Set y_j=r_j for terminal φ_{j+1}
y_j=r_j+γ*max_a'[Q'(φ_{j+1},a';θ')] for non-terminal φ_{j+1}
Perform gradient descent step on (y_j-Q(φ_j,a_j;θ))^2 w.r.t parameters θ
Every C steps reset Q'=Q
End For
End For
```
此伪代码展示了如何利用深度神经网络作为函数逼近器,在离散动作空间内执行价值迭代更新。值得注意的是,为了提高样本效率以及打破相邻状态间的关联性,采用了经验重放缓冲池技术;而固定频率同步目标网络参数则有助于缓解训练过程中可能遇到的价值估计震荡问题。
阅读全文
相关推荐
















