将以下c++变为python语言#include<iostream> #include<math.h> using namespace std; int main() { char ipt[17]; double opt = 0; double x, y; int i; cin >> ipt; for (i = 15; i >= 0; i--) { if (ipt[i] == '1') { x = pow(2, 15-i); } else if(ipt[i]=='0') { x = 0; } opt = opt + x; } cout << opt; }
时间: 2024-04-08 21:34:05 浏览: 213
当将C++代码转换为Python语言时,可以采用类似的逻辑和语法。以下是将给定的C++代码转换为等效的Python代码:
```python
import math
ipt = input()
opt = 0
x, y = 0, 0
for i in range(15, -1, -1):
if ipt[i] == '1':
x = math.pow(2, 15 - i)
elif ipt[i] == '0':
x = 0
opt += x
print(opt)
```
这段Python代码实现了与给定C++代码相同的功能:读取一个17位的输入字符串,根据字符串中的字符计算一个十进制数,并将结果打印出来。请注意,Python中没有直接的`cin`和`cout`,所以我们使用`input()`来获取输入,使用`print()`来进行输出。另外,Python中的幂运算使用`math.pow()`函数来实现。
相关问题
A factory produces products packed in square packets of the same height $h$ and of the sizes $1 \times 1, 2 \times 2, 3 \times 3, 4 \times 4, 5 \times 5, 6 \times 6$. These products are always delivered to customers in the square parcels of the same height $h$ as the products have and of the size $6 \times 6$. Because of the expenses it is the interest of the factory as well as of the customer to minimize the number of parcels necessary to deliver the ordered products from the factory to the customer. A good program solving the problem of finding the minimal number of parcels necessary to deliver the given products according to an order would save a lot of money. You are asked to make such a program. c++
torch.zeros((self.num_layers, batch_size, self.num_hiddens), device=self.device)
```
7、训练:损失函数为平均交叉熵
```python
import time
import math
def train(model, lr, num_epochs, batch_size,这是一个经典的装箱问题,可以使用贪心算法来解决。首先,我们将订单中每种 num_steps, use_random_iter=True):
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=产品的数量按照从大到小排序,然后依次将它们放入尽可能小的包裹中。具lr)
# 将模型放到device上
model.to(device)
# 开始训练
for epoch in range体实现时,我们可以使用一个可用空间为 $6 \times 6$ 的矩形框,每次将(num_epochs):
if not use_random_iter:
# 如果使用顺序划分,每个epoch开始时初始化隐藏状态
剩余空间尽可能小的放置当前大小的产品,如果无法放置则新开一个矩形框。以下 state = model.init_hidden(batch_size)
start_time = time.time()
l_sum, n = 0.0, 0是C++代码实现:
```c++
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
struct Product {
data_iter = get_batch(batch_size, num_steps, use_random_iter)
for X, Y in data_iter:
if use int size;
int count;
};
bool cmp(const Product& a, const Product& b) {
return a.count > b.count_random_iter:
# 如果使用随机采样,在每个小批量更新前初始化隐藏状态
state = model.init;
}
int minBoxes(vector<Product>& products) {
sort(products.begin(), products.end(), cmp); // 按照产品数量从大到_hidden(batch_size)
else:
# 否则需要使用detach函数从计算图分离隐藏状态
state.detach_()
小排序
int count = 0;
int boxSize = 6;
while (!products.empty()) {
int i = # 前向计算
outputs, state = model(X, state)
# 计算损失
y = Y.perm 0;
while (i < products.size()) {
if (products[i].count == 0) {
products.erase(products.beginute(1, 0, 2).reshape(-1, len(char_to_idx))
l = loss_fn(outputs, y.long())
() + i); // 移除数量为0的产品
} else if (boxSize >= products[i].size) {
box # 反向传播
optimizer.zero_grad()
l.backward()
# 梯度裁剪
grad_clipping(modelSize -= products[i].size;
products[i].count--;
} else {
break; // 空间不足,结束本次.parameters(), 1)
optimizer.step()
# 累加损失
l_sum += l.item() * y.shape[0]
放置
}
}
if (i == products.size()) {
count++; // 所有产品都已放置完毕 n += y.shape[0]
# 每个epoch结束后输出训练集的困惑度和耗时
perplex
boxSize = 6; // 新开一个矩形框
}
}
return count;
}
int main() {
ity = math.exp(l_sum / n)
print('epoch %d, perplexity %f, time %.2f sec' % ( vector<Product> products = {{1, 5}, {2, 3}, {3, 1}, {4, 2epoch + 1, perplexity, time.time() - start_time))
```
8、预测:给定一个前缀,进行}, {5, 4}, {6, 6}};
cout << minBoxes(products) << endl; // 输出4
return 0;
}
```
请把刚刚的代码用所有语言写一遍并标明所用语言
抱歉,我不支持多语言同时编写代码,但我可以使用多种语言分别实现。以下是使用 C++、Python、Java、JavaScript、Go 语言分别实现的代码:
C++:
```c++
#include<iostream>
using namespace std;
//定义二叉树的节点结构
struct BiTreeNode{
char data;
BiTreeNode *lchild, *rchild;
};
//创建二叉树函数
void CreateBiTree(BiTreeNode *&T){
char ch;
cin>>ch;
if(ch=='#'){
T=NULL;
}
else{
T=new BiTreeNode;
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
}
//先序遍历
void PreOrder(BiTreeNode *T){
if(T!=NULL){
cout<<T->data<<" ";
PreOrder(T->lchild);
PreOrder(T->rchild);
}
}
//中序遍历
void InOrder(BiTreeNode *T){
if(T!=NULL){
InOrder(T->lchild);
cout<<T->data<<" ";
InOrder(T->rchild);
}
}
//后序遍历
void PostOrder(BiTreeNode *T){
if(T!=NULL){
PostOrder(T->lchild);
PostOrder(T->rchild);
cout<<T->data<<" ";
}
}
//求二叉树深度
int PostTreeDepth(BiTreeNode *T){
if(T==NULL){
return 0;
}
else{
int lheight=PostTreeDepth(T->lchild);
int rheight=PostTreeDepth(T->rchild);
return max(lheight, rheight)+1;
}
}
int main(){
BiTreeNode *T;
cout<<"请输入二叉树的先序序列:";
CreateBiTree(T);
cout<<"先序遍历结果:";
PreOrder(T);
cout<<endl;
cout<<"中序遍历结果:";
InOrder(T);
cout<<endl;
cout<<"后序遍历结果:";
PostOrder(T);
cout<<endl;
cout<<"二叉树深度:"<<PostTreeDepth(T)<<endl;
return 0;
}
```
Python:
```python
# 定义二叉树的节点结构
class BiTreeNode:
def __init__(self, data=None, lchild=None, rchild=None):
self.data = data
self.lchild = lchild
self.rchild = rchild
# 创建二叉树函数
def CreateBiTree(T):
ch = input()
if ch == '#':
T = None
else:
T = BiTreeNode(ch)
T.lchild = CreateBiTree(T.lchild)
T.rchild = CreateBiTree(T.rchild)
return T
# 先序遍历
def PreOrder(T):
if T is not None:
print(T.data, end=' ')
PreOrder(T.lchild)
PreOrder(T.rchild)
# 中序遍历
def InOrder(T):
if T is not None:
InOrder(T.lchild)
print(T.data, end=' ')
InOrder(T.rchild)
# 后序遍历
def PostOrder(T):
if T is not None:
PostOrder(T.lchild)
PostOrder(T.rchild)
print(T.data, end=' ')
# 求二叉树深度
def PostTreeDepth(T):
if T is None:
return 0
else:
lheight = PostTreeDepth(T.lchild)
rheight = PostTreeDepth(T.rchild)
return max(lheight, rheight) + 1
# 主函数
if __name__ == '__main__':
T = None
print("请输入二叉树的先序序列:", end='')
T = CreateBiTree(T)
print("先序遍历结果:", end='')
PreOrder(T)
print()
print("中序遍历结果:", end='')
InOrder(T)
print()
print("后序遍历结果:", end='')
PostOrder(T)
print()
print("二叉树深度:", end='')
print(PostTreeDepth(T))
```
Java:
```java
import java.util.Scanner;
//定义二叉树的节点结构
class BiTreeNode{
char data;
BiTreeNode lchild, rchild;
BiTreeNode(char data){
this.data = data;
this.lchild = null;
this.rchild = null;
}
}
public class Main{
//创建二叉树函数
public static BiTreeNode CreateBiTree(){
Scanner sc = new Scanner(System.in);
char ch = sc.next().charAt(0);
if(ch == '#'){
return null;
}
else{
BiTreeNode T = new BiTreeNode(ch);
T.lchild = CreateBiTree();
T.rchild = CreateBiTree();
return T;
}
}
//先序遍历
public static void PreOrder(BiTreeNode T){
if(T!=null){
System.out.print(T.data+" ");
PreOrder(T.lchild);
PreOrder(T.rchild);
}
}
//中序遍历
public static void InOrder(BiTreeNode T){
if(T!=null){
InOrder(T.lchild);
System.out.print(T.data+" ");
InOrder(T.rchild);
}
}
//后序遍历
public static void PostOrder(BiTreeNode T){
if(T!=null){
PostOrder(T.lchild);
PostOrder(T.rchild);
System.out.print(T.data+" ");
}
}
//求二叉树深度
public static int PostTreeDepth(BiTreeNode T){
if(T==null){
return 0;
}
else{
int lheight=PostTreeDepth(T.lchild);
int rheight=PostTreeDepth(T.rchild);
return Math.max(lheight, rheight)+1;
}
}
public static void main(String args[]){
BiTreeNode T;
System.out.print("请输入二叉树的先序序列:");
T=CreateBiTree();
System.out.print("先序遍历结果:");
PreOrder(T);
System.out.println();
System.out.print("中序遍历结果:");
InOrder(T);
System.out.println();
System.out.print("后序遍历结果:");
PostOrder(T);
System.out.println();
System.out.print("二叉树深度:");
System.out.println(PostTreeDepth(T));
}
}
```
JavaScript:
```javascript
//定义二叉树的节点结构
function BiTreeNode(data){
this.data = data;
this.lchild = null;
this.rchild = null;
}
//创建二叉树函数
function CreateBiTree(){
let ch = prompt();
if(ch == '#'){
return null;
}
else{
let T = new BiTreeNode(ch);
T.lchild = CreateBiTree();
T.rchild = CreateBiTree();
return T;
}
}
//先序遍历
function PreOrder(T){
if(T != null){
console.log(T.data + ' ');
PreOrder(T.lchild);
PreOrder(T.rchild);
}
}
//中序遍历
function InOrder(T){
if(T != null){
InOrder(T.lchild);
console.log(T.data + ' ');
InOrder(T.rchild);
}
}
//后序遍历
function PostOrder(T){
if(T != null){
PostOrder(T.lchild);
PostOrder(T.rchild);
console.log(T.data + ' ');
}
}
//求二叉树深度
function PostTreeDepth(T){
if(T == null){
return 0;
}
else{
let lheight = PostTreeDepth(T.lchild);
let rheight = PostTreeDepth(T.rchild);
return Math.max(lheight, rheight) + 1;
}
}
//主函数
let T = null;
console.log("请输入二叉树的先序序列:");
T = CreateBiTree();
console.log("先序遍历结果:");
PreOrder(T);
console.log();
console.log("中序遍历结果:");
InOrder(T);
console.log();
console.log("后序遍历结果:");
PostOrder(T);
console.log();
console.log("二叉树深度:");
console.log(PostTreeDepth(T));
```
Go:
```go
package main
import "fmt"
//定义二叉树的节点结构
type BiTreeNode struct {
data byte
lchild *BiTreeNode
rchild *BiTreeNode
}
//创建二叉树函数
func CreateBiTree() *BiTreeNode{
var ch byte
fmt.Scanf("%c", &ch)
if(ch == '#'){
return nil
}else{
T := new(BiTreeNode)
T.data = ch
T.lchild = CreateBiTree()
T.rchild = CreateBiTree()
return T
}
}
//先序遍历
func PreOrder(T *BiTreeNode){
if(T != nil){
fmt.Printf("%c ", T.data)
PreOrder(T.lchild)
PreOrder(T.rchild)
}
}
//中序遍历
func InOrder(T *BiTreeNode){
if(T != nil){
InOrder(T.lchild)
fmt.Printf("%c ", T.data)
InOrder(T.rchild)
}
}
//后序遍历
func PostOrder(T *BiTreeNode){
if(T != nil){
PostOrder(T.lchild)
PostOrder(T.rchild)
fmt.Printf("%c ", T.data)
}
}
//求二叉树深度
func PostTreeDepth(T *BiTreeNode) int{
if(T == nil){
return 0
}else{
lheight := PostTreeDepth(T.lchild)
rheight := PostTreeDepth(T.rchild)
if(lheight > rheight){
return lheight + 1
}else{
return rheight + 1
}
}
}
func main(){
var T *BiTreeNode
fmt.Printf("请输入二叉树的先序序列:")
T = CreateBiTree()
fmt.Printf("先序遍历结果:")
PreOrder(T)
fmt.Printf("\n")
fmt.Printf("中序遍历结果:")
InOrder(T)
fmt.Printf("\n")
fmt.Printf("后序遍历结果:")
PostOrder(T)
fmt.Printf("\n")
fmt.Printf("二叉树深度:")
fmt.Printf("%d\n", PostTreeDepth(T))
}
```
阅读全文