请给我用pytorch和DQN实现MountainCar的强化学习的完整代码
时间: 2024-02-09 08:12:38 浏览: 183
好的,以下是使用PyTorch和DQN算法来解决MountainCar问题的完整代码。需要注意的是,这是一个基本的实现,您可以根据需要进行修改和优化。
```python
import gym
import random
import math
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from collections import deque
# 定义神经网络模型
class DQN(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size):
super(DQN, self).__init__()
self.layers = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_actions)
)
def forward(self, x):
return self.layers(x)
# 定义经验回放缓冲区
class ReplayBuffer(object):
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
state, action, reward, next_state, done = zip(*random.sample(self.buffer, batch_size))
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
# 定义DQN算法
class DQNAgent(object):
def __init__(self, env):
self.env = env
self.memory = ReplayBuffer(10000)
self.batch_size = 128
self.gamma = 0.99
self.eps_start = 1.0
self.eps_end = 0.01
self.eps_decay = 500
self.target_update = 10
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.policy_net = DQN(env.observation_space.shape[0], env.action_space.n, 128).to(self.device)
self.target_net = DQN(env.observation_space.shape[0], env.action_space.n, 128).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.policy_net.parameters())
self.steps_done = 0
def select_action(self, state):
eps_threshold = self.eps_end + (self.eps_start - self.eps_end) * \
math.exp(-1. * self.steps_done / self.eps_decay)
self.steps_done += 1
if random.random() > eps_threshold:
with torch.no_grad():
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
q_value = self.policy_net(state)
action = q_value.max(1)[1].item()
else:
action = self.env.action_space.sample()
return action
def optimize_model(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
state = torch.FloatTensor(state).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
action = torch.LongTensor(action).to(self.device)
reward = torch.FloatTensor(reward).to(self.device)
done = torch.FloatTensor(done).to(self.device)
q_values = self.policy_net(state).gather(1, action.unsqueeze(1)).squeeze(1)
next_q_values = self.target_net(next_state).max(1)[0]
expected_q_values = reward + (1 - done) * self.gamma * next_q_values
loss = F.mse_loss(q_values, expected_q_values.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def train(self, num_episodes):
for i_episode in range(num_episodes):
state = self.env.reset()
total_reward = 0
while True:
action = self.select_action(state)
next_state, reward, done, _ = self.env.step(action)
self.memory.push(state, action, reward, next_state, done)
state = next_state
self.optimize_model()
total_reward += reward
if done:
break
if i_episode % self.target_update == 0:
self.target_net.load_state_dict(self.policy_net.state_dict())
print("Episode: {}, reward: {}".format(i_episode, total_reward))
# 训练模型
env = gym.make("MountainCar-v0")
agent = DQNAgent(env)
agent.train(1000)
```
希望这个代码对你有所帮助!
阅读全文