位置环写的正确吗? for (i = 0; i < 4; i++) { PID_Calc(&chassis_move_control_loop->motor_speed_pid[i], chassis_move_control_loop->motor_chassis[i].speed, chassis_move_control_loop->motor_chassis[i].speed_set); speed_output = chassis_move_control_loop->motor_speed_pid[i].output; chassis_move_control_loop->motor_position_pid[i].set_point = speed_output; PID_Calc(&chassis_move_control_loop->motor_position_pid[i],chassis_move_control_loop->motor_chassis[i].position, chassis_move_control_loop->motor_chassis[i].position_set); position_output = chassis_move_control_loop->motor_position_pid[i].output; chassis_move_control_loop->motor_chassis[i].output = position_output; }

时间: 2023-05-26 11:07:11 浏览: 62
PID控制器的位置环,应该是在循环中不断更新输出的位置值,而不是不断计算PID值。 例如,以下代码可能更符合位置环的实现方式: float Setpoint = 50.0; // 目标位置 float Position = 0.0; // 当前位置 float Output = 0.0; // 输出控制值 PID pid(1.0, 0.0, 0.1); // PID控制器对象 // 循环计算输出控制值 while (true) { Position = read_position_sensor(); // 读取当前位置 Output = pid.Compute(Setpoint - Position); // 计算输出控制值 write_motor(Output); // 输出控制值到电机 delay(10); // 等待一段时间再进行下一次循环 } 以上代码中,使用了一个PID控制器对象pid,其Compute()方法可接受位置偏差作为输入(即目标位置与当前位置的差值),计算对应的输出控制值。在循环中,不断读取当前位置并计算输出控制值,然后输出到电机中进行调节。其中可以加入一些延时操作,确保每次循环的时间间隔相同。 需要注意的是,实际应用中还需要进行一些限幅、积分清零等操作,以确保PID控制器的稳定性和安全性。以上代码仅作为参考,需根据具体场景进行相应的调整和优化。
相关问题

解释这段代码static void chassis_control_loop(chassis_move_t *chassis_move_control_loop) { fp32 max_vector = 0.0f, vector_rate = 0.0f; fp32 temp = 0.0f; fp32 wheel_speed[4] = {0.0f, 0.0f, 0.0f, 0.0f}; uint8_t i = 0; float position_error, speed_error; float position_output, speed_output; float current_position, current_speed; float target_position, target_speed; chassis_move_control_loop->vx_set=vx_set; chassis_move_control_loop->vy_set=vy_set; chassis_move_control_loop->wz_set=angle_set; chassis_vector_to_mecanum_wheel_speed(chassis_move_control_loop->vx_set, chassis_move_control_loop->vy_set, chassis_move_control_loop->wz_set, wheel_speed); if (chassis_move_control_loop->chassis_mode == CHASSIS_VECTOR_RAW) { for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(wheel_speed[i]); } } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set = wheel_speed[i]; temp = fabs(chassis_move_control_loop->motor_chassis[i].speed_set); if (max_vector < temp) { max_vector = temp; } } if (max_vector > MAX_WHEEL_SPEED) { vector_rate = MAX_WHEEL_SPEED / max_vector; for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set *= vector_rate; } } for (i = 0; i < 4; i++) { PID_Calc(&chassis_move_control_loop->motor_speed_pid[i], chassis_move_control_loop->motor_chassis[i].speed, chassis_move_control_loop->motor_chassis[i].speed_set); } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(chassis_move_control_loop->motor_speed_pid[i].out); } }

chassis_move_control_loop->motor_chassis[i].position_pid, chassis_move_control_loop->motor_chassis[i].speed_pid, chassis_move_control_loop->motor_chassis[i].position_get, chassis_move_control_loop->motor_chassis[i].speed_get, chassis_move_control_loop->motor_chassis[i].speed_set, &position_error, &speed_error, &position_output, &speed_output); current_position = chassis_move_control_loop->motor_chassis[i].position_get; current_speed = chassis_move_control_loop->motor_chassis[i].speed_get; target_position = chassis_move_control_loop->motor_chassis[i].position_set; target_speed = speed_output; if(chassis_move_control_loop->motor_chassis[i].position_pid.enable == 1) //PID启动 { chassis_move_control_loop->motor_chassis[i].give_current = PID_Calc(&chassis_move_control_loop->motor_chassis[i].position_pid, current_position, target_position); } else { chassis_move_control_loop->motor_chassis[i].give_current = PID_Calc(&chassis_move_control_loop->motor_chassis[i].speed_pid, current_speed, target_speed); } } } 该函数为底盘控制代码,主要实现底盘的位置和速度控制。 具体实现方法为: 1.根据控制指令,将底盘的速度向量转换为各个驱动电机的速度。 2.根据底盘模式选择不同的控制方式: 如果模式为 CHASSIS_VECTOR_RAW,直接将每个驱动电机的输出电流设置为对应速度。 3.根据电机的最大速度设置,对转换后的速度进行限制。 4.对每个驱动电机进行PID控制,计算出目标位置和目标速度,并根据位置控制或速度控制模式下达电机电流控制指令。 5.将目标速度和目标位置在PID计算中使用,并将计算出的电流控制指令转换为电机的输出电流。

使用模块化(用户自定义函数)改写程序 4. 课本93页:自定义函数,求每个同学平均分,每门课总分及每门课程最高分,最高分是谁; #include<stdio.h> int main() { double s[8][6]={{78,82,93,74,65},{91,82,72,76,67},{100,90,85,72,98},{67,89,90,65,78},{77,88,99,45,89}}; int i,j; printf("学号\t语文\t数学\t物理\t化学\t音乐\t平均分\n"); //求平均分 for(i=0;i<5;i++) { for(j=0;j<5;j++){ s[i][5]+=s[i][j]; } s[i][5]=s[i][5]/5; } //求每门课程总分 for(i=0;i<5;i++) { for(j=0;j<5;j++){ s[5][j]+=s[i][j]; } } //求每门课最高分,以及改分数是哪个学生取得的成绩,并打印该学生学号 for(i=0;i<5;i++) { for(j=0;j<5;j++){ if(s[6][j]<s[i][j]){ s[6][j]=s[i][j]; s[7][j]=i+1;}}} //输出 for(i=0;i<8;i++) { if(i<5) printf("NO:%d\t",i+1); else if(i==5) { printf("总分:\t"); }else if(i==6){ printf("最高分:\t"); }else if(i==7){ printf("学号:\t"); } for(j=0;j<6;j++){ if(!((j==5)&&(i==5||i==6||i==7))){ printf("%.2lf\t",s[i][j]); } } printf("\n"); } }

以下是使用模块化改写后的程序: ```c #include <stdio.h> // 计算每个同学的平均分 void calc_avg(double s[][6], int n) { for (int i = 0; i < n; i++) { for (int j = 0; j < 5; j++) { s[i][5] += s[i][j]; } s[i][5] /= 5; } } // 计算每门课程的总分 void calc_total(double s[][6]) { for (int j = 0; j < 5; j++) { for (int i = 0; i < 5; i++) { s[5][j] += s[i][j]; } } } // 计算每门课程的最高分及学生学号 void calc_max(double s[][6]) { for (int j = 0; j < 5; j++) { double max_score = 0; int max_student = -1; for (int i = 0; i < 5; i++) { if (s[i][j] > max_score) { max_score = s[i][j]; max_student = i; } } s[6][j] = max_score; s[7][j] = max_student + 1; } } // 输出结果 void print_result(double s[][6]) { printf("学号\t语文\t数学\t物理\t化学\t音乐\t平均分\n"); for (int i = 0; i < 8; i++) { if (i < 5) printf("NO:%d\t", i + 1); else if (i == 5) printf("总分:\t"); else if (i == 6) printf("最高分:\t"); else if (i == 7) printf("学号:\t"); for (int j = 0; j < 6; j++) { if (!((j == 5) && (i == 5 || i == 6 || i == 7))) { printf("%.2lf\t", s[i][j]); } } printf("\n"); } } int main() { double s[8][6] = {{78, 82, 93, 74, 65}, {91, 82, 72, 76, 67}, {100, 90, 85, 72, 98}, {67, 89, 90, 65, 78}, {77, 88, 99, 45, 89}}; calc_avg(s, 5); calc_total(s); calc_max(s); print_result(s); return 0; } ``` 主要的改动是将原先的代码拆分成了三个函数:`calc_avg`、`calc_total` 和 `calc_max`,分别用于计算每个同学的平均分、每门课程的总分以及每门课程的最高分及学生学号。这样做有利于提高代码的可读性和可维护性。同时,`print_result` 函数用于输出结果。

相关推荐

最新推荐

recommend-type

SPWM波形生成工具spwm_calc_v1.3.2使用说明.pdf

在很早以前(记得大概在 2013 年的样子吧)分享了自己写的一个 SPWM 工具与一些相关技术资料,这期间收到了许多网友的信息,也结交了不少的网友。总体来说本 SPWM 工具使用起来还是比较简单方便的,之前在几个大的...
recommend-type

248ssm-mysql-jsp 校园外卖管理系统.zip(可运行源码+数据库文件+文档)

此次设计的外卖订单管理系统的登录角色一共分为四个,消费者、商户、管理员以及骑手。设计的系统为前端网页和后台管理系统。 消费者主要有以模块的需求:(1)购物车,(2)订单中心,(3)收藏夹,(4)收货地址,(5)个人信息管理,(6)站内咨询浏览,(7)在线留言。 商户的用例包括了一下几个模块设计:(1)商品管理,(2)库存管理,(3)订单管理,(4)销量统计,(5)收藏统计(6)销售额统计,(7)订单量统计 管理员系统结构中的功能设计比较多,分为三个大类分别是基础信息、业务功能和统计信息,基础信息主要是对消费者、商户以及骑手进行信息的维护工作,维护网站内的资讯信息等。业务功能是对网站内的商家进行分类管理,对于商品以及库存进行管理,对订单进行管理以及留言管理。统计信息包括对于商品销量的统计、订单走势图的分析等。 此次使用了java web技术线进行网页端的开发,开发工具采用idea.工具,数据库采用了MySQL进行设计开发,服务器采用了Tomcat服务器技术。该网站系统能够将学校周围商家的外卖产品在网站上向用户进行展示
recommend-type

MyBatis 动态 SQL 示例

MyBatis 是一个持久层框架,它允许用户在 XML 文件中编写动态 SQL 语句。MyBatis 的动态 SQL 功能非常强大,它允许开发者根据运行时的条件动态地生成 SQL 语句。这使得 MyBatis 能够灵活地处理各种复杂的查询需求。 MyBatis 动态 SQL 通过使用 <if>、<choose>、<when>、<otherwise>、<trim>、<set> 等标签来实现。附件中是一些常见的动态 SQL 标签及其用法,通过组合使用这些标签,可以编写出非常灵活和强大的 SQL 语句,以适应不同的查询和更新需求
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种