基于dwt算法的音频数字水印python

时间: 2023-05-16 19:02:37 浏览: 311
DWT算法是数字水印领域中被广泛应用的一种算法,可用于音频数字水印的加密和解密。Python语言性能优越,易于学习和编程,因此被很多开发者选择用来实现数字水印相关技术。 基于DWT算法的音频数字水印Python实现需要安装好相关的PyWavelets库,并了解DWT变换的原理和相关参数。首先需要将音频信号进行DWT变换,然后在选定的频带内嵌入数字水印信息,具体可采用LSB等嵌入方式。嵌入完成后,再进行反变换,还原出加入数字水印的音频信号。 根据实际需求,可以考虑加入多重加密手段,如哈希函数、加密算法等,以提高数字水印的安全性和鲁棒性。此外,还应注意不同噪声环境下的数字水印实验,以测试算法在不同频带、信噪比下的稳定性和可靠性。 开发基于DWT算法的音频数字水印Python程序,需要对信号处理和加密算法有深入的理解,同时需要在编程实践中不断进行优化和改进,以提高其算法效率和应用价值。
相关问题

基于python的dwt-svd数字水印系统实现

基于Python的DWT-SVD数字水印系统实现步骤如下: 1. 导入相应的Python库,包括NumPy、OpenCV和PyWavelets等。 2. 加载原始图像和水印图像,并将它们转换为灰度图像。 3. 对原始图像进行离散小波变换(DWT)。可以选择不同的小波基函数,如Haar、Daubechies等。将图像分解为LL、LH、HL和HH四个子图像。 4. 将水印图像转换为一维矩阵,并进行SVD分解。得到水印图像的奇异值和奇异向量。 5. 将水印信息嵌入到原始图像的LL子图像中。可以根据需求选择嵌入方式,如直接加密方式、扩频方式或扩展方式。 6. 对修改后的LL子图像进行逆离散小波变换(IDWT),得到修改后的原始图像。 7. 对修改后的原始图像进行可视化展示,并保存为新的图像文件。 8. 提取水印信息的过程与嵌入过程类似,通过图像处理和分析的方法,从修改后的原始图像中提取出嵌入的水印信息。 9. 对提取的水印信息进行比较和验证,以判断水印是否正确嵌入和提取出来。 在实现过程中,需要注意选择合适的参数和算法,如小波变换的级数、水印信息的加密方式、嵌入强度等。此外,可以通过测试和评估系统的性能来改进和优化算法。 这是一个基本的DWT-SVD数字水印系统的实现过程,可以根据具体需求和问题进行更细节的调整和改进。

音频水印算法python

音频水印算法的实现方式有很多,这里介绍一种基于DWT(离散小波变换)的水印算法: 1. 读取音频文件,并将其转换为数字信号。 2. 对数字信号进行DWT小波分解,得到低频信号和高频信号。 3. 将水印信息嵌入到低频信号中,可以使用LSB(最低有效位)嵌入方法。 4. 对修改后的低频信号和高频信号进行IDWT小波重构,得到带有水印的音频信号。 5. 最后将带有水印的音频信号保存到文件中。 下面是一个Python实现示例: ```python import pywt import numpy as np import wave # 读取音频文件 def read_wave(filename): with wave.open(filename, "rb") as f: params = f.getparams() nchannels, sampwidth, framerate, nframes = params[:4] str_data = f.readframes(nframes) wave_data = np.fromstring(str_data, dtype=np.short) wave_data.shape = -1, nchannels wave_data = wave_data.T return wave_data, framerate # 写入音频文件 def write_wave(filename, data, framerate): with wave.open(filename, "wb") as f: f.setnchannels(1) f.setsampwidth(2) f.setframerate(framerate) f.writeframes(data) # 小波水印嵌入 def embed_watermark(data, watermark): coeffs = pywt.wavedec(data, 'db1') cA, cD = coeffs[0], coeffs[1:] cA_size = cA.size watermark = np.array(list(watermark) + [0]*(cA_size - len(watermark))) cA_embed = np.array([cA[i] | watermark[i] for i in range(cA_size)]) coeffs_embed = [cA_embed] + cD data_embed = pywt.waverec(coeffs_embed, 'db1') return data_embed.astype(np.short).tostring() # 小波水印提取 def extract_watermark(data, watermark_size): coeffs = pywt.wavedec(data, 'db1') cA, cD = coeffs[0], coeffs[1:] cA_size = cA.size watermark = np.zeros(watermark_size) for i in range(watermark_size): watermark[i] = cA[i] & 1 return watermark.astype(int) # 测试 if __name__ == '__main__': # 读取原始音频文件 data, framerate = read_wave("test.wav") # 嵌入水印信息 watermark = "Hello, world!" data_embed = embed_watermark(data[0], bytes(watermark, encoding='utf-8')) # 将嵌入水印后的音频文件保存到本地 write_wave("test_embed.wav", data_embed, framerate) # 读取嵌入水印后的音频文件并提取水印信息 data_embed_read, _ = read_wave("test_embed.wav") watermark_extract = extract_watermark(data_embed_read[0], len(watermark)*8) watermark_extract = bytes([int(watermark_extract[i:i+8].to01(), 2) for i in range(0, len(watermark_extract), 8)]).decode("utf-8").rstrip('\x00') print("Extracted watermark:", watermark_extract) ```

相关推荐

最新推荐

recommend-type

一种基于DWT 和DCT 域的音频信息隐藏算法

提出了一种基于离散小波变换(DWT) 和离散余弦变换(DCT) 的音频信息隐藏的新算法。 首先,对载体音频信号整体进行小波分解,将其低频小波系数分段后进行离散余弦变换; 其次根据人 耳听觉的频率掩蔽效应,选择出对人...
recommend-type

springboot(酒店管理系统)

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! 需要加v19306446185
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,
recommend-type

解释一下下面每句话的含义@RequestMapping(value = "gcGl") public String gcGl(Gcgl gcGl, Model model) { List<Gcgl> list = gcglService.findList(gcGl); if (list!=null&&list.size()>0) { model.addAttribute("gcGl", list.get(0)); }else { model.addAttribute("gcGl", gcGl); } return "modules/tjxx/gc08glForm"; }

这段代码是一个Java方法,用于处理HTTP请求,具体含义如下: - @RequestMapping(value = "gcGl"):这是一个注解,表示该方法会处理名为"gcGl"的请求,即当用户访问该请求时,会调用该方法。 - public String gcGl(Gcgl gcGl, Model model):这是方法的声明,它有两个参数:一个是Gcgl类型的gcGl,另一个是Model类型的model。方法的返回值是一个字符串类型。 - List<Gcgl> list = gcglService.findList(gcGl):这行代码调用了一个名为findList的方法,该方法接受一个
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

爬虫性能优化:让爬虫跑得更快,更稳

![爬虫性能优化:让爬虫跑得更快,更稳](https://img-blog.csdnimg.cn/20190615235856212.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9pY29kZS5ibG9nLmNzZG4ubmV0,size_16,color_FFFFFF,t_70) # 1.1 集中式与分布式爬虫架构 **集中式爬虫架构:** * 所有爬虫组件(爬虫、调度器、存储)集中在一个服务器上。 * 优点:简单易用,成本低。 * 缺点:扩展性差,并发度受限,易
recommend-type

用ldap方式访问AD域的的错误解释

LDAP(轻型目录访问协议)是一种用于访问目录服务的协议,AD域是一个常用的目录服务。在使用LDAP方式访问AD域时,可能会出现以下错误: 1. 连接失败:这可能是由于AD域服务器不可用、网络连接问题或身份验证失败引起的。可以检查网络连接、AD域服务器状态和LDAP身份验证设置来解决此问题。 2. 认证错误:这可能是由于用户名或密码不正确、连接到LDAP服务器的方式不正确或用户没有足够的权限引起的。可以检查用户名和密码是否正确、连接方式是否正确以及用户所属组的权限是否足够来解决此问题。 3. 返回错误代码:LDAP服务器可能会返回一些错误代码,例如“无效的参数”、“服务器内部错误”等。可