sinx三次方的原函数
时间: 2023-09-02 10:09:23 浏览: 360
$\int \sin^3x \, dx = \int \sin^2x \cdot \sin x \, dx = \int (1-\cos^2x) \cdot \sin x \, dx$
令 $u = \cos x, \, du = -\sin x \, dx$,则
$\begin{aligned} \int (1-\cos^2x) \cdot \sin x \, dx &= \int (1-u^2) \cdot (-du) \\ &= u - \frac{u^3}{3} + C \\ &= \cos x - \frac{\cos^3x}{3} + C \end{aligned}$
因此,$\int \sin^3x \, dx = \cos x - \frac{\cos^3x}{3} + C$。
阅读全文