uniapp livepusher调用前置摄像头 人脸识别并生成代码
时间: 2023-12-24 08:05:58 浏览: 371
你可以使用uniapp的live-pusher组件调用前置摄像头,并结合人脸识别库来实现人脸识别功能。下面是一个简单的示例代码:
1. 首先,在页面中引入live-pusher组件和人脸识别库:
```
<template>
<view>
<live-pusher id="livePusher" url="rtmp://xxx.xxx.xxx.xxx/live/xxx" mode="RTC" camera="front"></live-pusher>
<canvas id="canvas"></canvas>
</view>
</template>
<script>
import * as faceapi from 'face-api.js';
export default {
mounted() {
this.initFaceRecognition();
},
methods: {
async initFaceRecognition() {
await faceapi.nets.ssdMobilenetv1.loadFromUri('/models');
await faceapi.nets.faceLandmark68Net.loadFromUri('/models');
await faceapi.nets.faceRecognitionNet.loadFromUri('/models');
}
}
}
</script>
<style>
#canvas {
position: absolute;
top: 0;
left: 0;
}
</style>
```
2. 在页面加载完成后,初始化人脸识别库。
3. 在需要进行人脸识别的地方,使用canvas绘制视频流中的图像,并进行人脸识别:
```
const video = document.getElementById('livePusher');
const canvas = document.getElementById('canvas');
const displaySize = { width: video.width, height: video.height };
faceapi.matchDimensions(canvas, displaySize);
setInterval(async () => {
const detections = await faceapi.detectAllFaces(video).withFaceLandmarks().withFaceDescriptors();
const resizedDetections = faceapi.resizeResults(detections, displaySize);
canvas.getContext('2d').clearRect(0, 0, canvas.width, canvas.height);
faceapi.draw.drawDetections(canvas, resizedDetections);
faceapi.draw.drawFaceLandmarks(canvas, resizedDetections);
faceapi.draw.drawFaceExpressions(canvas, resizedDetections);
}, 100);
```
这样,你就可以调用前置摄像头,在画面中进行人脸识别并绘制人脸边框、关键点和表情了。注意,你需要将人脸识别库的模型文件放置在项目的/models目录下。
希望对你有帮助!如有其他问题,请随时提问。
阅读全文