用C++语言解决文件里的三个实验题
时间: 2024-10-19 11:06:53 浏览: 28
### 实验题目及解决方案概述
#### 1. 网络布线问题
**问题描述**: 需要在6个城市之间布置通信网络,使所有城市能互相通信,并且总成本最低。
**算法**: 使用Prim算法构建最小生成树 (MST) 来解决这个问题。
**代码实现**:
```cpp
#include <iostream>
#include <vector>
#include <limits>
using namespace std;
const int INF = numeric_limits<int>::max();
void prim(int **cost, int V) {
vector<int> key(V, INF);
vector<bool> mstSet(V, false);
vector<int> parent(V, -1);
key[0] = 0;
for (int count = 0; count < V - 1; ++count) {
int u = -1;
for (int i = 0; i < V; ++i)
if (!mstSet[i] && (u == -1 || key[i] < key[u]))
u = i;
mstSet[u] = true;
for (int v = 0; v < V; ++v)
if (cost[u][v] && !mstSet[v] && cost[u][v] < key[v]) {
parent[v] = u;
key[v] = cost[u][v];
}
}
cout << "Edge \tWeight\n";
for (int i = 1; i < V; ++i)
cout << parent[i] << " - " << i << "\t" << cost[parent[i]][i] << endl;
}
int main() {
int V = 6;
int **cost = new int*[V];
for (int i = 0; i < V; ++i) {
cost[i] = new int[V];
fill(cost[i], cost[i] + V, INF);
}
cost[0][1] = 10; cost[0][3] = 30; cost[0][4] = 45;
cost[1][0] = 10; cost[1][2] = 50; cost[1][4] = 40; cost[1][5] = 25;
cost[2][1] = 50; cost[2][4] = 35; cost[2][5] = 15;
cost[3][0] = 30; cost[3][5] = 20;
cost[4][0] = 45; cost[4][1] = 40; cost[4][2] = 35; cost[4][5] = 55;
cost[5][1] = 25; cost[5][2] = 15; cost[5][3] = 20; cost[5][4] = 55;
prim(cost, V);
for (int i = 0; i < V; ++i)
delete[] cost[i];
delete[] cost;
return 0;
}
```
#### 2. 最快路线问题
**问题描述**: 找出从A点到H点最快的路线,考虑不同路段的速度限制和交通拥堵情况。
**算法**: 使用Dijkstra算法计算最短路径,但这里的“最短”是指时间而不是距离。
**代码实现**:
```cpp
#include <iostream>
#include <vector>
#include <queue>
#include <limits>
using namespace std;
struct Node {
int vertex;
double time;
bool operator<(const Node& other) const {
return time > other.time;
}
};
double dijkstra(int start, int end, vector<vector<double>>& graph, vector<vector<double>>& speeds) {
int n = graph.size();
vector<double> times(n, numeric_limits<double>::max());
priority_queue<Node> pq;
pq.push({start, 0});
times[start] = 0;
while (!pq.empty()) {
Node node = pq.top();
pq.pop();
int u = node.vertex;
double t = node.time;
if (u == end)
break;
for (int v = 0; v < n; ++v) {
if (graph[u][v] != 0) {
double travelTime = graph[u][v] / speeds[u][v];
if (times[u] + travelTime < times[v]) {
times[v] = times[u] + travelTime;
pq.push({v, times[v]});
}
}
}
}
return times[end];
}
int main() {
int n = 8;
vector<vector<double>> graph(n, vector<double>(n, 0));
vector<vector<double>> speeds(n, vector<double>(n, 0));
graph[0][1] = 9; graph[0][2] = 7; graph[0][3] = 9;
graph[1][2] = 6; graph[1][4] = 12; graph[1][5] = 12;
graph[2][3] = 8; graph[2][4] = 9;
graph[3][4] = 10; graph[3][6] = 10;
graph[4][5] = 7; graph[4][6] = 8; graph[4][7] = 7;
graph[5][7] = 9; graph[6][7] = 11;
speeds[0][1] = 40; speeds[0][3] = 80;
speeds[1][5] = 40; speeds[3][6] = 30;
speeds[4][7] = 20; speeds[0][2] = 50;
speeds[1][2] = 50; speeds[1][4] = 50;
speeds[2][3] = 50; speeds[2][4] = 50;
speeds[3][4] = 50; speeds[4][5] = 50;
speeds[4][6] = 50; speeds[5][7] = 80;
speeds[6][7] = 80;
double fastestTime = dijkstra(0, 7, graph, speeds);
cout << "The fastest route from A to H takes: " << fastestTime << " hours." << endl;
return 0;
}
```
#### 3. 汽车加油问题
**问题描述**: 一辆汽车加满油后可以行驶N公里,途中经过多个加油站,目标是最少加油次数到达目的地。
**算法**: 使用贪心策略,每次尽可能多地行驶,直到无法到达下一个加油站或终点。
**代码实现**:
```cpp
#include <iostream>
#include <vector>
using namespace std;
vector<int> minRefills(vector<int>& stations, int tank, int destination) {
int numRefills = 0;
int currentRefill = 0;
vector<int> refills;
while (currentRefill <= stations.size() - 1) {
int lastRefill = currentRefill;
while (currentRefill <= stations.size() - 1 && stations[currentRefill] - stations[lastRefill] <= tank) {
currentRefill++;
}
if (currentRefill == lastRefill) {
return {}; // It's not possible to reach the destination
}
if (currentRefill <= stations.size() - 1) {
refills.push_back(stations[lastRefill]);
numRefills++;
}
}
return refills;
}
int main() {
int N = 600;
vector<int> stations = {300, 500, 700, 1100, 1400, 1600, 1900, 2200};
int destination = 2300;
vector<int> refills = minRefills(stations, N, destination);
if (refills.empty()) {
cout << "It is not possible to reach the destination with the given fuel capacity and stations." << endl;
} else {
cout << "You should refill at these stations: ";
for (int station : refills) {
cout << station << " ";
}
cout << endl;
}
return 0;
}
```
以上代码分别实现了三个实验题的解决方案,使用了Prim算法、Dijkstra算法和贪心策略来解决问题。希望这些代码对你有所帮助!
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![text/x-c](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044833.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)