pytorch deepar时间序列预测代码
时间: 2023-09-06 07:00:56 浏览: 205
PyTorch DeepAR是一种基于神经网络模型的时间序列预测算法。以下是一个简单示例代码,用于说明如何使用PyTorch DeepAR来预测时间序列数据。
首先,需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pad_sequence
from torch.nn.functional import mse_loss
```
然后,定义数据集类:
```python
class TimeSeriesDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
```
接下来,定义模型类:
```python
class DeepAR(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(DeepAR, self).__init__()
self.rnn = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.rnn(x)
out = self.linear(out[:, -1, :])
return out
```
然后,定义一些超参数和模型实例:
```python
input_size = 1
hidden_size = 128
num_layers = 2
output_size = 1
batch_size = 32
epochs = 100
model = DeepAR(input_size, hidden_size, num_layers, output_size)
criterion = mse_loss
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
接下来,加载和准备数据集,通过数据加载器和填充序列进行以批处理的方式处理数据:
```python
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # 示例数据,可替换为自己的数据
dataset = TimeSeriesDataset(data)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True)
```
然后,进行训练模型:
```python
for epoch in range(epochs):
for batch in data_loader:
optimizer.zero_grad()
inputs = pad_sequence(batch.float().unsqueeze(-1), batch_first=True)
outputs = model(inputs)
loss = criterion(outputs.squeeze(), targets.squeeze())
loss.backward()
optimizer.step()
```
最后,使用训练好的模型进行预测:
```python
inputs = pad_sequence(data.float().unsqueeze(-1), batch_first=True)
outputs = model(inputs)
predictions = outputs.squeeze().detach().numpy()
```
这只是一个简单的示例代码,实际上应根据具体情况进行调整和扩展。希望能帮助到你!
阅读全文